Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Ingmar Bitter, Arie E. Kaufman, and Mie Sato. Penalized-distance volumetric skeleton algorithm. IEEE Transactions on Visualization and Computer Graphics, 7(3):195–206, 2001.
D. Breen, S. Mauch, and R. Whitaker. 3D scan conversion of csg models into distance, closest-point and colour volumes. In M. Chen, A.E. Kaufman, and R. Yagel, editors, Volume Graphics, pp. 135–158, 2000.
Daniel Cohen-Or, Amira Solomovici, and Levin Levin. Three-dimensional distance field metamorphosis. ACM Transactions on Graphics, 17(2):116–141, April 1998. ISSN 0730-0301.
Olivier Cuisenaire. Distance Transformations: Fast Algorithms and Applications to Medical Image Processing. PhD thesis, Université Catholique de Louvain, Louvain-La-Neuve, Belgium, January 1999.
Hinnik Eggers. Two fast Euclidean distance transformations in Z2 based on sufficient propagation. Computer Vision and Image Understanding: CVIU, 69(1):106–116, January 1998.
Sarah F. Frisken, Ronald N. Perry, Alyn Rockwood, and Thouis R. Jones. Adaptively sampled distance fields: A general representation of shape for computer graphics. In Kurt Akeley, editor, Siggraph 2000 Proceedings, pp. 249–254. ACM SIGGRAPH, 2000.
Sarah F. F. Gibson. Using distance maps for accurate surface reconstruction in sampled volumes. In Proceedings of the 1998 Symposium on Volume Visualization (VOLVIS-98), pp. 23–30, New York, October 19–20 1998. ACM Press.
Kenneth Hoff, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha. Fast computation of generalized voronoi diagrams using graphics hardware. In Alyn Rockwood, editor, Siggraph 99 Proceedings, pp. 277–286, N.Y., August8–13 1999. ACM SIGGRAPH.
Jian Huang, Yan Li, Roger Crawfis, S.C. Lu, and Shu Liou. A complete distance field representation. In Thomas Ertl, Ken Joy, and Amitabh Varshney, editors, Proceedings Visualization 2001, pp. 247–254. IEEE Computer Society Technical Committee on Visualization and Graphics Executive Committee, 2001.
Sean Mauch. A fast algorithm for computing the closest point and distance transform, 2000. http://www.acm.caltech.edu/~seanm/projects/cpt/cpt.html.
Sean Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, Caltech, Pasadena CA, April 2003.
Calvin R. Maurer, Jr., Rensheng Qi, and Vijay Raghavan. A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell., 25(2):265–270, 2003.
James C. Mullikin. The vector distance transform in two and three dimensions. Computer Vision, Graphics, and Image Processing. Graphical Models and Image Processing, 54(6):526–535, November 1992.
A. Rosenfeld and J. L. Pfalz. Distance functions on digital pictures. Pattern Recognition, 1:33–61, 1968.
J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 94:1591–1595, 1996.
Christian Sigg, Ronald Peikert, and Markus Gross. Signed distance transform using graphics hardware. In R. Moorhead, G. Turk, and J. van Wijk, editors, Proceedings of IEEE Visualization’ 03, pp. 83–90. IEEE Computer Society Press, October 2003.
M. Sramek and A. Kaufman. Fast ray-tracing of rectilinear volume data using distance transforms. In Hans Hagen, editor, IEEE Transactions on Visualization and Computer Graphics, volume 6(3), pp. 236–252. IEEE Computer Society, 2000.
Yen-hsi Richard Tsai. Rapid and accurate computation of the distance function using grids. Technical report, Dept. of Mathematics, University of California, Los Angeles, 2000.
Ming Wan, Frank Dachille, and Arie Kaufman. Distance-field based skeletons for virtual navigation. In Thomas Ertl, Ken Joy, and Amitabh Varshney, editors, Proceedings of the Conference on Visualization 2001 (VIS-01), pp. 239–246, Piscataway, NJ, October 21–26 2001. IEEE Computer Society.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peikert, R., Sigg, C. (2006). Optimized Bounding Polyhedra for GPU-Based Distance Transform. In: Bonneau, GP., Ertl, T., Nielson, G.M. (eds) Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30790-7_5
Download citation
DOI: https://doi.org/10.1007/3-540-30790-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26066-0
Online ISBN: 978-3-540-30790-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)