[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ingmar Bitter, Arie E. Kaufman, and Mie Sato. Penalized-distance volumetric skeleton algorithm. IEEE Transactions on Visualization and Computer Graphics, 7(3):195–206, 2001.

    Article  Google Scholar 

  2. D. Breen, S. Mauch, and R. Whitaker. 3D scan conversion of csg models into distance, closest-point and colour volumes. In M. Chen, A.E. Kaufman, and R. Yagel, editors, Volume Graphics, pp. 135–158, 2000.

    Google Scholar 

  3. Daniel Cohen-Or, Amira Solomovici, and Levin Levin. Three-dimensional distance field metamorphosis. ACM Transactions on Graphics, 17(2):116–141, April 1998. ISSN 0730-0301.

    Article  Google Scholar 

  4. Olivier Cuisenaire. Distance Transformations: Fast Algorithms and Applications to Medical Image Processing. PhD thesis, Université Catholique de Louvain, Louvain-La-Neuve, Belgium, January 1999.

    Google Scholar 

  5. Hinnik Eggers. Two fast Euclidean distance transformations in Z2 based on sufficient propagation. Computer Vision and Image Understanding: CVIU, 69(1):106–116, January 1998.

    Google Scholar 

  6. Sarah F. Frisken, Ronald N. Perry, Alyn Rockwood, and Thouis R. Jones. Adaptively sampled distance fields: A general representation of shape for computer graphics. In Kurt Akeley, editor, Siggraph 2000 Proceedings, pp. 249–254. ACM SIGGRAPH, 2000.

    Google Scholar 

  7. Sarah F. F. Gibson. Using distance maps for accurate surface reconstruction in sampled volumes. In Proceedings of the 1998 Symposium on Volume Visualization (VOLVIS-98), pp. 23–30, New York, October 19–20 1998. ACM Press.

    Google Scholar 

  8. Kenneth Hoff, Tim Culver, John Keyser, Ming Lin, and Dinesh Manocha. Fast computation of generalized voronoi diagrams using graphics hardware. In Alyn Rockwood, editor, Siggraph 99 Proceedings, pp. 277–286, N.Y., August8–13 1999. ACM SIGGRAPH.

    Google Scholar 

  9. Jian Huang, Yan Li, Roger Crawfis, S.C. Lu, and Shu Liou. A complete distance field representation. In Thomas Ertl, Ken Joy, and Amitabh Varshney, editors, Proceedings Visualization 2001, pp. 247–254. IEEE Computer Society Technical Committee on Visualization and Graphics Executive Committee, 2001.

    Google Scholar 

  10. Sean Mauch. A fast algorithm for computing the closest point and distance transform, 2000. http://www.acm.caltech.edu/~seanm/projects/cpt/cpt.html.

    Google Scholar 

  11. Sean Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, Caltech, Pasadena CA, April 2003.

    Google Scholar 

  12. Calvin R. Maurer, Jr., Rensheng Qi, and Vijay Raghavan. A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell., 25(2):265–270, 2003.

    Article  Google Scholar 

  13. James C. Mullikin. The vector distance transform in two and three dimensions. Computer Vision, Graphics, and Image Processing. Graphical Models and Image Processing, 54(6):526–535, November 1992.

    Google Scholar 

  14. A. Rosenfeld and J. L. Pfalz. Distance functions on digital pictures. Pattern Recognition, 1:33–61, 1968.

    Article  MathSciNet  Google Scholar 

  15. J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 94:1591–1595, 1996.

    MathSciNet  Google Scholar 

  16. Christian Sigg, Ronald Peikert, and Markus Gross. Signed distance transform using graphics hardware. In R. Moorhead, G. Turk, and J. van Wijk, editors, Proceedings of IEEE Visualization’ 03, pp. 83–90. IEEE Computer Society Press, October 2003.

    Google Scholar 

  17. M. Sramek and A. Kaufman. Fast ray-tracing of rectilinear volume data using distance transforms. In Hans Hagen, editor, IEEE Transactions on Visualization and Computer Graphics, volume 6(3), pp. 236–252. IEEE Computer Society, 2000.

    Google Scholar 

  18. Yen-hsi Richard Tsai. Rapid and accurate computation of the distance function using grids. Technical report, Dept. of Mathematics, University of California, Los Angeles, 2000.

    Google Scholar 

  19. Ming Wan, Frank Dachille, and Arie Kaufman. Distance-field based skeletons for virtual navigation. In Thomas Ertl, Ken Joy, and Amitabh Varshney, editors, Proceedings of the Conference on Visualization 2001 (VIS-01), pp. 239–246, Piscataway, NJ, October 21–26 2001. IEEE Computer Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peikert, R., Sigg, C. (2006). Optimized Bounding Polyhedra for GPU-Based Distance Transform. In: Bonneau, GP., Ertl, T., Nielson, G.M. (eds) Scientific Visualization: The Visual Extraction of Knowledge from Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30790-7_5

Download citation

Publish with us

Policies and ethics