Article PDF
Avoid common mistakes on your manuscript.
References
Baker, F., H. Bösch, C. Doney, D. O’Brien, D. S. Schimel, 2010: Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory. Atmos. Chem. Phys., 10, 4145–4165, https://doi.org/10.5194/acp-10-4145-2010.
Bösch, H., D. Baker, B. Connor, D. Crisp, and C. Miller, 2011: Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission. Remote Sensing, 3, 270–304, https://doi.org/10.3390/rs3020270.
Cai, Z. N., Y. Liu, and D. X. Yang, 2014: Analysis of XCO2 retrieval sensitivity using simulated Chinese carbon satellite (TanSat) measurements. Science China Earth Sciences, 57, 1919–1928, https://doi.org/10.1007/s11430-013-4707-1.
Chen, X., D. X. Yang, Z. N. Cai, Y. Liu, and R. Spurr, 2017a: Aerosol retrieval sensitivity anderror analysis for the cloud and aerosol polarimetric imager on board TanSat: The effect of multi-angle measurement. Remote Sensing, 9, 183, https://doi.org/10.3390/rs9020183.
Chen, X., J. Wang, Y. Liu, X. G. Xu, Z. N. Cai, D. X., Yang, C. X. Yan, and L. Feng, 2017b: Angular dependence of aerosol information content in capi/tansat observation over land: Effect of polarization and synergy with atrain satellites. Remote Sensing of Environment, 196, 163–177, https://doi.org/10.1016/j.rse.2017.05.007.
Crisp, D., and Coauthors, 2017: The on-orbit performance of the orbiting carbon observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10, 59–81, https://doi.org/10.5194/amt-10-59-2017.
Eldering, A., and Coauthors, 2016: The orbiting carbon observatory-2: First 18 months of science data products. Atmospheric Measurement Techniques Discussions, 10, 549–563, https://doi.org/10.5194/amt-10-549-2017.
Feng, L., P. I. Palmer, H. Bösch, S. Dance, 2009: Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble kalman filter. Atmos. Chem. Phys., 9, 2619–2633, https://doi.org/10.5194/acp-9-2619-2009.
Kuze, A., and Coauthors, 2014: Long-term vicarious calibration of GOSAT short-wave sensors: Techniques for error reduction and new estimates of radiometric degradation factors. IEEE Trans. Geosci. Remote Sens., 52, 3991–4004, https://doi.org/10.1109/TGRS.2013.2278696.
Li, Z. G., and Coauthors, 2017: Prelaunch spectral calibration of a carbon dioxide spectrometer. Measurement Science and Technology, 28, 065801, https://doi.org/10.1088/1361-6501/aa6507.
Liu, Y., Z. N. Cai, D. X. Yang, M. Z. Duan, and D. Lü, 2013a: Optimization of the instrument configuration for TanSat CO2 spectrometer. Chinese Science Bulletin, 58, 2787–2789. (in Chinese)
Liu, Y., D. X. Yang, and Z. N. Cai, 2013b: A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data. Chinese Science Bulletin, 58, 1520–1523, https://doi.org/10.1007/s11434-013-5680-y.
Wang, Q., Z. D. Yang, and Y. M. Bi, 2014: Spectral parameters and signal-to-noise ratio requirement for TanSat hyper spectral remote sensor to measure atmospheric CO2. Remote Sensing of the Atmosphere, Clouds, and Precipitation, https://doi.org/10.1117/12.2067572.
Wang, X., Z. Guo, Y. P. Huang, H. J. Fan, and W. B. Li W, 2017: A cloud detection scheme for the Chinese carbon dioxide observation satellite (TANSAT). Adv. Atmos. Sci., 34(1), 16–25, https://doi.org/10.1007/s00376-016-6033-y.
Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, J. Wang, and X. Chen, 2015: An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations. Science Bulletin, 60, 2063–2066, httpS://doi.org/10.1007/s11434-015-0953-2.
Yang, D. X., H. F. Zhang, Y. Liu, B. Z. Chen, Z. N. Cai, and D. R. Lü, 2017: Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using carbontracker-china. Adv. Atmos. Sci., 34, 965–976, https://doi.org/10.1007/s00376-017-6221-4.
Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, 2009: Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sola, 5, 160–163, https://doi.org/10.2151/sola.2009-041.
Yoshida, Y., and Coauthors, 2013: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCO4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6, 1533–1547, https://doi.org/10.5194/amt-6-1533-2013.
Zhang, H., Y. Q. Zheng, C. Lin, W. Q. Wang, Q. Wang, and S. Li, 2017: Laboratory spectral calibration of TanSat and the influence of multiplex merging of pixels. Int. J. Remote Sens., 38, 3800–3816, https://doi.org/10.1080/01431161. 2017.1306142.
Acknowledgements
This work was supported by the National Key R&D Program of China (2016YFA0600203), the National High-Tech Research and Development Program (2011AA12A104), and External Cooperation Program of the Chinese Academy of Sciences (Grant No. GJHZ1507). The people working on the TanSat mission are highly appreciated. The authors would also like to thank the science teams of GOSAT, SCHIAMACHY, and OCO-2 for valuable discussions, as well as groups at the University of Leicester and RemoTeC (SRON and KIT) for their valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, D., Liu, Y., Cai, Z. et al. First Global Carbon Dioxide Maps Produced from TanSat Measurements. Adv. Atmos. Sci. 35, 621–623 (2018). https://doi.org/10.1007/s00376-018-7312-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-018-7312-6