[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of “The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues”. The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%–30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is −0.34 Pg C yr−1 (±0.08 Pg C yr−1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.

摘要

基于高光谱分辨率短波红外卫星观测可以获取高精度的全球大气CO2浓度资料, 有效提高碳通量的计算精度, 从而降低温室气体排放在气候变化研究中的不确定性. 本文介绍在中国科学院“应对气候变化的碳收支认证及相关问题”战略性科技先导专项的支持下建立的碳通量计算系统, 实现了从卫星观测到碳通量计算. 该系统由两部分构成: 中国科学院大气物理研究所研发的基于卫星观测的大气CO2浓度反演算法(The Institute of Atmospheric PhysicsCarbon Dioxide Retrieval Algorithm for Satellite Remote Sensing, IAPCAS)和中国科学院地理科学与资源研究所研发的CarbonTracker-China(CT-China)碳同化系统. 本研究使用日本Greenhouse gases Observing SATellite(GOSAT)卫星观测资料进行大气CO2浓度反演和碳通量计算. 为提高IAPCAS反演产品的质量, 研发了一种基于观测参数和反演参数的质量控制方法, 用于数据筛选和偏差订正等反演产品的优化, 最终25%–30%被认为是高质量产品, 可供数据分析和碳通量反演使用. 结合地表覆盖类型和人口密度, 本研究分析了大气CO2浓度的季节变化特征. 使用IAPCAS的反演产品, 应用CT-China开展了中国地区碳通量的计算实验, 结果表明净生态系统CO2交换量为−0.34 Pg C yr−1 (±0.08 Pg C yr−1). 理论上讲, 与仅使用地基观测相比, 使用卫星资料的碳通量计算可以有效降低85%的不确定性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aben, I., O. Hasekamp, and W. Hartmann, 2007: Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 104(3), 450–459.

    Article  Google Scholar 

  • Basu, S., and Coauthors, 2014: The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI. Geophys. Res. Lett., 41(5), 1809–1815.

    Article  Google Scholar 

  • Basu, S., J. B. Miller, and S. Lehman, 2016: Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation system simulations. Atmos. Chem. Phys, 16, 5665–5683.

    Article  Google Scholar 

  • Böesch, H., D. Baker, B. Connor, D. Crisp, and C. Miller, 2011: Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission. Remote Sensing, 3, 270–304.

    Article  Google Scholar 

  • Butz, A., O. Hasekamp, C. Frankenberg, and I. Aben, 2009: Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Appl. Opt., 48, 3322–3336.

    Article  Google Scholar 

  • Chevallier, F., P. I. Palmer, L. Feng, H. Boesch, C. W. O’Dell, and P. Bousquet, 2014: Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett., 41(3), 1065–1070.

    Article  Google Scholar 

  • Deng, F., D. B. A. Jones, C. W. O’Dell, R. Nassar, and N. C. Parazoo, 2016: Combining GOSAT XCO2 observations over land and ocean to improve regional CO2 flux estimates. J. Geophys. Res., 121, 1896–1913.

    Article  Google Scholar 

  • Feng, L., P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. I. Morino, and R. Sussmann, 2015: Elevated uptake of CO2 over Europe inferred from GOSAT XCO2 retrievals: A real phenomenon or an artefact of the analysis. Atmos. Chem. Phys. Discuss., 15, 1989–2011.

    Article  Google Scholar 

  • Feng, L., P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Sussmann, 2016: Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: Sensitivity to measurement bias inside and outside Europe. Atmos. Chem. Phys., 16(3), 1289–1302.

    Article  Google Scholar 

  • Hammerling, D. M., A. M. Michalak, and S. R. Kawa, 2012a: Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2. J. Geophys. Res., 117(D6), doi: 10.1029/2011JD017015.

    Google Scholar 

  • Hammerling, D. M., A. M. Michalak, C. O’Dell, and S. R. Kawa, 2012b: Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophys. Res. Lett., 39(8), doi: 10.1029/2012GL051203.

    Google Scholar 

  • Hasekamp, O. P., and A. Butz, 2008: Efficient calculation of intensity and polarization spectra in vertically inhomogeneous scattering and absorbing atmospheres. J. Geophys. Res., 113, D20309.

    Google Scholar 

  • Houweling, S., and Coauthors, 2015: An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res., 120, 5253–5266.

    Article  Google Scholar 

  • Inoue, M., and Coauthors, 2013: Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmos. Chem. Phys. Discuss., 13, 9711–9788.

    Article  Google Scholar 

  • Jacobson, A. R., and Coauthors, 2007: A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. methods and global-scale fluxes. Global Biogeochem. Cy., 21(1), 5252-5252.

    Google Scholar 

  • Jiang, F., and Coauthors, 2016: A comprehensive estimate of recent carbon sinks in China using both top-down and bottomup approaches. Sci. Rep., 6, 22130.

    Article  Google Scholar 

  • Jiang, F., H. W. Wang, J. M. Chen, L. X. Zhou, W. M. Ju, A. J. Ding, L. X. Liu, and W. Peters, 2013: Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences, 10(8), 5311–5324, doi: 10.5194/bg- 10-5311-2013.

    Article  Google Scholar 

  • Krol, M., and Coauthors, 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417-432.

    Article  Google Scholar 

  • Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fouriertransform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48(35), 6716–6733.

    Article  Google Scholar 

  • Kuze, A., and Coauthors, 2014: Long-term vicarious calibration of GOSAT short-wave sensors: Techniques for error reduction and new estimates of radiometric degradation factors. IEEE Transactions on Geoscience and Remote Sensing, 52(7), 3991–4004.

    Article  Google Scholar 

  • Mao, J. P., and S. R. Kawa, 2004: Sensitivity studies for spacebased measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl. Opt., 43(4), 914–927

    Article  Google Scholar 

  • Miller, C. E., and Coauthors, 2007: Precision requirements for space-based XCO2 data, J. Geophys. Res., 112, D10314.

    Article  Google Scholar 

  • O’Dell, C. W., and Coauthors, 2012: The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmospheric Measurement Techniques, 5, 99–121.

    Article  Google Scholar 

  • Oshchepkov, S., and Coauthors, 2013: Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites. J. Geophys. Res., 118, 1493–1512.

    Google Scholar 

  • Peters, W., and Coauthors, 2005: An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res, 110, 1–18.

    Google Scholar 

  • Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. P. Natl. Acad. Sci. USA, 104(48), 18925–18930.

    Article  Google Scholar 

  • Peters, W., and Coauthors, 2010: Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 16(4), 1317–1337.

    Article  Google Scholar 

  • Piao, S. L., J. Y. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch, and T. Wang, 2009: The carbon balance of terrestrial ecosystems in China. Nature, 458(7241), 1009–1013.

    Article  Google Scholar 

  • Qu, Y., and Coauthors, 2013: Comparison of atmospheric CO2 observed by GOSAT and two ground stations in China. Int. J. Remote Sens., 34(11), 3938–3946.

    Article  Google Scholar 

  • Reuter, M., M. Buchwitz, O. Schneising, J. Heymann, H. Bovensmann, and J. P. Burrows, 2010: A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds. Atmospheric Measurement Techniques, 3, 209–232.

    Article  Google Scholar 

  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Co., Ltd., 81–100.

    Book  Google Scholar 

  • Spurr, R. J. D., 2006: VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. Journal of Quantitative Spectroscopy and Radiative Transfer, 102, 316–342.

    Article  Google Scholar 

  • Takagi, H., and Coauthors, 2014: Influence of differences in current GOSAT XCO2 retrievals on surface flux estimation. Geophys. Res. Lett., 41(7), 2598–2605.

    Article  Google Scholar 

  • Uchino, O., and Coauthors, 2012: Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: A case study over Tsukuba. Atmos. Chem. Phys., 12, 3393–3404.

    Article  Google Scholar 

  • Wang, J. S., S. R. Kawa, G. J. Collatz, D. F. Baker, and L. Ott, 2015: An inversion analysis of recent variability in natural CO2 fluxes using GOSAT and in situ observations. NASA Tech. Rep. GSFC-E-DAA-TN28909.

    Google Scholar 

  • van der Werf, G. R., and Coauthors, 2006: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 6, 3423–3441.

    Article  Google Scholar 

  • Wunch, D., and Coauthors, 2011a: The total carbon Column observing network. Philos. Trans. Roy. Soc. London, 369, 2087–2112.

    Article  Google Scholar 

  • Wunch, D., and Coauthors, 2011b: A method for evaluating bias in global measurements of CO2 total columns from space. Atmos. Chem. Phys., 11, 12317–12337.

    Article  Google Scholar 

  • Yang, D. X., Y. Liu, Z. N. Cai, H. Bösch, R. Parker, P. Palmer, and L. Feng, 2014: Measurement of atmospheric carbon dioxide form space: NIR/SWIR algorithm description and retrieval study on GOSAT observation. ESA SP-724, 1–8.

    Google Scholar 

  • Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, J. Wang, X. Chen, 2015: An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations. Science Bulletin, 60(23), 2063–2066.

    Article  Google Scholar 

  • Yang, D. X., Y. Liu, Z. N. Cai, J. B. Deng, 2016: The spatial and temporal distribution of carbon dioxide over China based on GOSAT observations. Chinese Journal of Atmospheric Sciences, 40(3), 541–550 (in Chinese).

    Google Scholar 

  • Yoshida, Y., and Coauthors, 2013: Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6, 1533–1547.

    Article  Google Scholar 

  • Zhang, H. F., and Coauthors, 2014: Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J. Geophys. Res., 119, 3500–3515, doi: 10.1002/2013JD021297.

    Google Scholar 

  • Zhang, H. F., and Coauthors, 2015: Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals. Science Bulletin, 60(3), 380–386.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the GOSAT project and TCCON for providing the observational data. This work was funded by the Strategic Priority Research Program—Climate Change: Carbon Budget and Relevant Issues (Grant No. XDA05040200), the National Key Research and Development Program of China (Grant No. 2016YFA0600203), the National Natural Science Foundation of China (Grant Nos. 41375035 and 31500402), and the Chinese Academy of Sciences Strategic Priority Program on Space Science (Grant No. XDA04077300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhang, H., Liu, Y. et al. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China. Adv. Atmos. Sci. 34, 965–976 (2017). https://doi.org/10.1007/s00376-017-6221-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-6221-4

Key words

关键词

Navigation