[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Correspondence-free stereo vision: extension from planar scene case to polyhedral scene case

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Correspondence establishment is a central problem of stereo vision. In a work Aloimonos and Herve (IEEE Trans Pattern Anal Mach Intell 12(5):504–510, 1990) presented an algorithm that could reconstruct a single planar surface without establishing point-to-point correspondences. The work uses images that are taken under a specific stereo configuration. In this paper, we generalize the algorithm to one for general stereo configuration of the cameras. We further provide an extension of the algorithm, so that not only distant or planar scene but also multi-surface polyhedral scene can be reconstructed. Experimental results on a number of real image sets are presented to illustrate the performance of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aloimonos J., Herve J.Y.: Correspondence-free stereo and motion: planar structure. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 504–510 (1990)

    Article  Google Scholar 

  2. Baker, H.H., Binford, T.O.: Depth from edge and intensity-based stereo. In: Proceedings of 7th International Joint Conferences on Artificial Intelligence, pp. 631–636 (1981)

  3. Barnett V., Lewis T.: Outliers in Statistical Data, pp. 328–340. Wiley, New York (1994)

    MATH  Google Scholar 

  4. Chung, R.: Correspondenceless stereo vision for planar or distant scene. In: Proceedings of the 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 966–971, July 2003

  5. Comanicu D., Meer P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  6. Dhond U.R., Aggarwal J.K.: Structure from stereo- A review. IEEE Trans. Syst. Man Cybern. 19(6), 1489–1510 (1989)

    Article  MathSciNet  Google Scholar 

  7. Fusiello, A., Roberto, V., Trucco, E.: Efficient stereo with multiple windowing. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 858–863 (1997)

  8. Grimson W.E.L.: A computer implementation of a theory of human stereo vision. Philos. Trans. R. Soc. Lond. 292(1058), 217–253 (1981)

    Article  Google Scholar 

  9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the Fourth Alvey Vision Conference, pp. 147–151 (1988)

  10. Heikkilä J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000)

    Article  Google Scholar 

  11. Herman M., Kanade T.: Incremental reconstruction of 3D scenes from multiple, complex images. Artif. Intell. 30(3), 289–341 (1986)

    Article  Google Scholar 

  12. Jones G.A.: Constraint, optimization, and hierarchy: reviewing stereoscopic correspondence of complex features. Comput. Vis. Image Underst. 65(1), 57–78 (1997)

    Article  MATH  Google Scholar 

  13. Kanade T., Okutomi M.: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 920–932 (1994)

    Article  Google Scholar 

  14. Marr D., Poggio T.: Cooperative computation of stereo disparity. Science 194(4262), 283–287 (1976) 15 October (1976)

    Article  Google Scholar 

  15. Marr D., Poggio T.: A computational theory of human stereo vision. Proc. R. Soc. Lond. B 204, 301–328 (1979)

    Article  Google Scholar 

  16. Mori K., Kidode M., Asada H.: An iterative prediction and correction method for automatic stereo comparison. Comput. Graph. Image Process. 2, 393–401 (1973)

    Article  Google Scholar 

  17. Okutomi M., Kanade T.: A multiple baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993)

    Article  Google Scholar 

  18. Okutomi M., Katayama Y., Oka S.: A simple stereo algorithm to recover precise object boundaries and smooth surfaces. Int. J. Comput. Vis. 47(1–3), 261–273 (2002)

    Article  MATH  Google Scholar 

  19. Panton D.A.: A flexible approach to digital stereo mapping. Photogramm. Eng. Remote Sens. 44(12), 1499–1512 (1978)

    Google Scholar 

  20. Robert, L., Faugeras, O.: Curve-based stereo: figural continuity and curvature. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 57–62 (1991)

  21. Scharf L.L.: The SVD and reduced-rank signal processing. In: Vaccaro, R.J. (eds) SVD and Signal Processing II: Algorithms, Analysis and Applications., pp. 3–31. Elsevier, Amsterdam (1991)

    Google Scholar 

  22. Scharstein D., Szeliski R.: Stereo matching with nonlinear diffusion. Int. J. Comput. Vis. 28(2), 155–174 (1998)

    Article  Google Scholar 

  23. Scharstein D., Szeliski R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  24. Schmid C., Zisserman A.: The geometry and matching of lines and curves Over multiple views. Int. J. Comput. Vis. 40(3), 199–233 (2000)

    Article  MATH  Google Scholar 

  25. Szeliski, R., Zabih, R.: An experimental comparison of stereo algorithms. In: IEEE Workshop on Vision Algorithms, September (1999)

  26. Tao H., Sawhney H., Kumar R.: A global matching framework for stereo computation. In: Proceedings of the International Conference on Computer Vision 1, 532–539 (2001)

    Google Scholar 

  27. Torr, P.H.S.: http://research.microsoft.com/~philtorr/

  28. Yuille A.L., Poggio T.: A Generalized Ordering Constraint for Stereo Correspondence. Artificial Intelligence Laboratory Memo, No. 777. Cambridge, MIT, Mass (1984)

    Google Scholar 

  29. Yuan, D., Chung, R.: Correspondence-free tereo vision for the case of arbitrarily-positioned cameras. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, pp. 1688–1693 (2003)

  30. Zhang, Z.Y.: http://www-sop.inria.fr/robotvis/personnel/zzhang/softwares.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, D., Chung, R. Correspondence-free stereo vision: extension from planar scene case to polyhedral scene case. Machine Vision and Applications 21, 485–496 (2010). https://doi.org/10.1007/s00138-008-0177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0177-4

Keywords

Navigation