[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Novel Stereo-Matching Method Utilizing Surface Normal Data

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Stereo matching has a critical disadvantage in that 3D data acquired with this method is not accurate because only intensity data from the image can be utilized. Optimization processes such as belief propagation and graph cuts increase the robustness and accuracy of the 3D data, but these require significant computational power. We propose a novel method of stereo matching that utilizes surface normal data derived from the photometric stereo technique. We obtain an improved depth map without requiring additional optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Konrad, R., & Padmanaban, N. (2017). StereoPhonic: Depth from stereo on phones. In CS231n final project.

  2. Wang, Q., et al. (2014). Stereo vision–based depth of field rendering on a mobile device. Journal of Electronic Imaging,23(2), 023009.

    Article  Google Scholar 

  3. Foggia, P., Jolion, J. M., Limongiello, A., & Vento, M. (2007, January). A new approach for stereo matching in autonomous mobile robot applications. In IJCAI (pp. 2103–2108).

  4. Sun, J., Zheng, N.-N., & Shum, H.-Y. (2003). Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence,25(7), 787–800.

    Article  MATH  Google Scholar 

  5. Hong, L., & Chen, G. (2004). Segment-based stereo matching using graph cuts. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition. CVPR 2004 (pp. I–I). IEEE.

  6. Kim, J. C., et al. (2005). A dense stereo matching using two-pass dynamic programming with generalized ground control points. In IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005 (pp. 1075–1082). IEEE.

  7. Bleyer, M., & Gelautz, M. (2007). Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions. Signal Processing: Image Communication,22(2), 127–143.

    Google Scholar 

  8. Klaus, A., Sormann, M., & Karner, K. (2006). Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In 18th International Conference on Pattern Recognition, 2006. ICPR 2006 (pp. 15–18). IEEE.

  9. Yang, Q., et al. (2009). Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence,31(3), 492–504.

    Article  Google Scholar 

  10. Yang, Q., Wang, L.; Ahuja, N. (2010). A constant-space belief propagation algorithm for stereo matching. In: 2010 IEEE Conference on Computer vision and pattern recognition (CVPR) (pp. 1458–1465). IEEE.

  11. Koschan, A., Rodehorst, V., & Spiller, K. (1996). Color stereo vision using hierarchical block matching and active color illumination. In Proceedings of the 13th international conference on pattern recognition, 1996 (pp. 835–839). IEEE.

  12. Zhang, L., Curless, B., & Seitz, S. M. (2003). Spacetime stereo: Shape recovery for dynamic scenes. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings (pp. 2–367). IEEE.

  13. Einecke, N., & Eggert, J. (2015). A multi-block-matching approach for stereo. In Intelligent Vehicles Symposium (IV), 2015 IEEE (pp. 585–592). IEEE.

  14. Muresan, M., Nedevschi, S., & Danescu, R. (2017). A multi patch warping approach for improved stereo block matching. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications—Volume 6: VISAPP, (VISIGRAPP 2017) (pp. 459–466). ISBN 978-989-758-227-1.

  15. Zhang, S., et al. (2017). Robust stereo matching with surface normal prediction. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 2540–2547). IEEE.

  16. Harms, H., et al. (2014). Accuracy analysis of surface normal reconstruction in stereo vision. In 2014 IEEE intelligent vehicles symposium proceedings (pp. 730–736). IEEE.

  17. Sun, J., Smith, M., Smith, L., & Farooq, A. (2007). Examining the uncertainty of the recovered surface normal in three light photometric stereo. Image and Vision Computing,25(7), 1073–1079.

    Article  Google Scholar 

  18. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence,22(11), 1330–1334.

    Article  Google Scholar 

  19. GERIG, Guido. Image Rectification (Stereo). CS 6320, 2012.

  20. Woodham, R. J. (1979). Photometric stereo: A reflectance map technique for determining surface orientation from image intensity. In Image understanding systems and industrial applications I. (pp. 136–144). International Society for Optics and Photonics.

  21. Ohta, Y., & Kanade, T. (1985). Stereo by intra-and inter-scanline search using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence,2, 139–154.

    Article  Google Scholar 

  22. Hirschmuller, H. (2005). Accurate and efficient stereo processing by semi-global matching and mutual information. In IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005 (pp. 807–814). IEEE.

  23. Wang, Z.-F., & Zheng, Z.-G. (2008). A region based stereo matching algorithm using cooperative optimization. In IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008 (pp. 1–8). IEEE.

  24. Mukherjee, S., & Guddeti, R. M. R. (2014). A hybrid algorithm for disparity calculation from sparse disparity estimates based on stereo vision. In 2014 international conference on signal processing and communications (SPCOM) (pp. 1–6). IEEE.

  25. Sorgi, L., & Neri, A. (2006). Bidirectional dynamic programming for stereo matching. In 2006 international conference on image processing (pp. 1013–1016). IEEE.

  26. Nehab, D., et al. (2005). Efficiently combining positions and normals for precise 3D geometry. In ACM transactions on graphics (TOG) (pp. 536–543). ACM.

  27. Yang, Q., et al. (2006). Real-time global stereo matching using hierarchical belief propagation. In BMVC (pp. 989–998).

  28. Zentner, C., & Liu, Y. (2015). Runtime analysis of GPU-based stereo matching. International Journal of Advanced Computer Science and Applications (IJACSA), 6(11), 287–291.

    Google Scholar 

  29. Congote, J, et al. (2009). Realtime dense stereo matching with dynamic programming in CUDA. In CEIG (pp. 231–234).

  30. Kowalczuk, J., Psota, E. T., & Perez, L. C. (2013). Real-time stereo matching on CUDA using an iterative refinement method for adaptive support-weight correspondences. IEEE Transactions on Circuits and Systems for Video Technology,23(1), 94–104.

    Article  Google Scholar 

  31. Sah, S., & Jotwani, N. (2012). Stereo matching using multi-resolution images on CUDA. International Journal of Computer Applications, 56(12), 47–55.

    Article  Google Scholar 

  32. Wu, J., et al. (2019). Unsupervised texture reconstruction method using bidirectional similarity function for 3-D measurements. Optics Communications,439, 85–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minho Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, E., Kim, S. & Chang, M. Novel Stereo-Matching Method Utilizing Surface Normal Data. Int. J. Precis. Eng. Manuf. 21, 1437–1445 (2020). https://doi.org/10.1007/s12541-020-00350-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00350-8

Keywords

Navigation