[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Wind turbines with aramid fiber composite wind blades for smart cities like urban environments: Numerical simulation study

  • Original Research
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

A smart city is an efficient and resilient urban center that, by leveraging its resources, provides its inhabitants with a good standard of living. Many countries worldwide have it as a mission to create citizen-friendly, eco-friendly, and sustainable smart cities. Power generation and power management are also integral parts of this mission. Power generation through renewable energy sources will be a crucial factor in a smart city environment. Renewable energy sources like solar and winds are the most used renewable energy and are more suited for urban applications. The present manuscript focuses on wind power generation using wind turbines in urban environments like smart cities. Most of the urban applications use Vertical axis Wind Turbine (VWT) for power generation. Compared with the Horizontal axis Wind Turbine (HWT), the low efficiency and dynamic instability problems are the main drawbacks of VWT. But the HWT does not have any such issues. Instead, it has its own disadvantages when it is used in smart cities like urban environments. The main shortfalls of conventional HWT are weighing heavily and creating more vibration and acoustic noise. An aramid fiber-based wind blade is proposed in this work to solve the shortcomings of conventional HWT and make it more suited for smart cities such as the urban environment. The CATIA modeling software suite is used to model and design wind blades. To examine the behaviour of the proposed wind turbine, structural, modal, and harmonic analyses are performed using ANSYS. The numerical results indicated that the proposed aramid fiber-based wind turbine is light in weight, creates low acoustic noises, free from vibration, and has a lower chance of resonance occurrence. Thus, it is better suited for urban environments such as smart cities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

Similar content being viewed by others

Data availability

The present manuscript has no associated data.

Consent to publish

Not applicable.

References

  1. S.P. Mohanty, U. Choppali, E. Kougianos, Everything you wanted to know about smart cities: the Internet of Things is the backbone. IEEE Consum. Electron. Mag. 5(3), 60–70 (2016)

    Article  Google Scholar 

  2. M. Brenna, M.C. Falvo, F. Foiadelli, L. Martirano, F. Massaro, D. Poli, A, Vaccaro, Challenges in energy systems for the smart-cities of the future. In 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), September 2012 (IEEE, 2012), pp. 755–762

  3. C.F. Calvillo, A. Sánchez-Miralles, J. Villar, Energy management and planning in smart cities. Renew. Sustain. Energy Rev. 55, 273–287 (2016)

    Article  Google Scholar 

  4. C.K. Toh, Security for smart cities. IET Smart Cities 2(2), 95–104 (2020)

    Article  Google Scholar 

  5. R. Karki, R. Billinton, Reliability/cost implications of utilizing wind energy in small isolated power systems. Wind Eng. 24(5), 379–388 (2000)

    Article  Google Scholar 

  6. H.F. Kohan, F. Lotfipour, M. Eslami, Numerical simulation of a photovoltaic thermoelectric hybrid power generation system. Sol. Energy 174, 537–548 (2018)

    Article  Google Scholar 

  7. L.Q. Liu, Z.X. Wang, The development and application practice of wind–solar energy hybrid generation systems in China. Renew. Sustain. Energy Rev. 13(6–7), 1504–1512 (2009)

    Article  Google Scholar 

  8. A. Al-Dousari, W. Al-Nassar, A. Al-Hemoud, A. Alsaleh, A. Ramadan, N. Al-Dousari, M. Ahmed, Solar and wind energy: challenges and solutions in desert regions. Energy 176, 184–194 (2019)

    Article  Google Scholar 

  9. L. Wang, C. Singh, Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Trans. Energy Convers. 24(1), 163–172 (2009)

    Article  Google Scholar 

  10. S.D. Ahmed, F.S. Al-Ismail, M. Shafiullah, F.A. Al-Sulaiman, I.M. El-Amin, Grid integration challenges of wind energy: a review. IEEE Access 8, 10857–10878 (2020)

    Article  Google Scholar 

  11. H. Sun, H. Yang, Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model. Renew. Energy 147, 192–203 (2020)

    Article  Google Scholar 

  12. M. Sessarego, J. Feng, N. Ramos-García, S.G. Horcas, Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow. Renew. Energy 146, 1524–1535 (2020)

    Article  Google Scholar 

  13. S. Eriksson, H. Bernhoff, M. Leijon, Evaluation of different turbine concepts for wind power. Renew. Sustain. Energy Rev. 12(5), 1419–1434 (2008)

    Article  Google Scholar 

  14. A. Amayri, Z. Tian, T. Jin, Condition based maintenance of wind turbine systems considering different turbine types. In 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 17 June 2011 (IEEE, 2011), pp. 596–600

  15. P. Sørensen, B. Andresen, J. Fortmann, P. Pourbeik, Modular structure of wind turbine models in IEC 61400-27-1. In 2013 IEEE Power and Energy Society General Meeting, 21 July 2013 (IEEE, 2013), pp. 1–5

  16. M.K. Johari, M. Jalil, M.F. Shariff, Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). Int. J. Eng. Technol. 7(4.13), 74–80 (2018)

    Article  Google Scholar 

  17. E. Hernandez-Estrada, O. Lastres-Danguillecourt, J.B. Robles-Ocampo, A. Lopez-Lopez, P.Y. Sevilla-Camacho, B.Y. Perez-Sariñana, J.R. Dorrego-Portela, Considerations for the structural analysis and design of wind turbine towers: a review. Renew. Sustain. Energy Rev. 137, 110447 (2021)

    Article  Google Scholar 

  18. S. Iswahyudi, S. Sutrisno, P. Prajitno, S.B. Wibowo, Airfoil types effect on geometry and performance of a small-scale wind turbine blade design. J. Appl. Eng. Sci. 18(1), 132–139 (2020)

    Article  Google Scholar 

  19. R. Kumar, K. Raahemifar, A.S. Fung, A critical review of vertical axis wind turbines for urban applications. Renew. Sustain. Energy Rev. 89, 281–291 (2018)

    Article  Google Scholar 

  20. F. Castellani, D. Astolfi, M. Becchetti, F. Berno, Experimental and numerical analysis of the dynamical behavior of a small horizontal-axis wind turbine under unsteady conditions: Part I. Machines 6(4), 52 (2018)

    Article  Google Scholar 

  21. W.T. Chong, W.K. Muzammil, H.C. Ong, K. Sopian, M. Gwani, A. Fazlizan, S.C. Poh, Performance analysis of the deflector integrated cross axis wind turbine. Renew. Energy 138, 675–690 (2019)

    Article  Google Scholar 

  22. J. Ye, C. Chu, H. Cai, X. Hou, B. Shi, S. Tian, X. Chen, J. Ye, A multi-scale model for studying failure mechanisms of composite wind turbine blades. Compos. Struct. 212, 220–229 (2019)

    Article  Google Scholar 

  23. C. Rubiella, C.A. Hessabi, A.S. Fallah, State of the art in fatigue modelling of composite wind turbine blades. Int. J. Fatigue 117, 230–245 (2018)

    Article  Google Scholar 

  24. M. Tarfaoui, M. Nachtane, H. Khadimallah, D. Saifaoui, Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads. Appl. Compos. Mater. 25(2), 237–254 (2018)

    Article  Google Scholar 

  25. I.B. Rocha, S. Raijmaekers, R.P. Nijssen, F.P. Van der Meer, L.J. Sluys, Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades. Compos. Struct. 174, 110–122 (2017)

    Article  Google Scholar 

  26. M. Tarfaoui, M. Nachtane, H. Boudounit, Finite element analysis of composite offshore wind turbine blades under operating conditions. J. Therm. Sci. Eng. Appl. 12(1), 011001 (2020)

    Article  CAS  Google Scholar 

  27. Y. El Assami, M. Drissi Habti, V. Raman, Stiffening offshore composite wind-blades bonding joints by carbon nanotubes reinforced resin—a new concept. J. Struct. Integr. Maint. 5(2), 87–103 (2020)

    Google Scholar 

  28. C. Robert, T. Pecur, J.M. Maguire, A.D. Lafferty, E.D. McCarthy, C.M. Brádaigh, A novel powder-epoxy towpregging line for wind and tidal turbine blades. Composites B 203, 108443 (2020)

    Article  CAS  Google Scholar 

  29. M. Appadurai, E. Raj, Epoxy/silicon carbide (SiC) nanocomposites based small scale wind turbines for urban applications. Int. J. Energy Environ. Eng. 13(1), 191–206 (2022)

    Article  Google Scholar 

  30. C.C. Qin, A.T. Mulroney, M.C. Gupta, Anti-icing epoxy resin surface modified by spray coating of PTFE Teflon particles for wind turbine blades. Mater. Today Commun. 22, 100770 (2020)

    Article  CAS  Google Scholar 

  31. P.K. Dubey, S.K. Mahanth, A. Dixit, S. Changmongkol, Recyclable epoxy systems for rotor blades. IOP Conf. Ser. Mater. Sci. Eng. 942(1), 012014 (2020)

    Article  CAS  Google Scholar 

  32. M. Appadurai, E.F.I. Raj, Finite element analysis of composite wind turbine blades. In 2021 7th International Conference on Electrical Energy Systems (ICEES), February 2021 (IEEE, 2021), pp. 585–589

  33. K.A. Muhammed, C.R. Kannan, B. Stalin, Performance analysis of wind turbine blade materials using nanocomposites. Mater. Today Proc. 33, 4353–4361 (2020)

    Article  CAS  Google Scholar 

  34. P. Dharmavarapu, M.B. Reddy, Mechanical, low velocity impact, fatigue and tribology behaviour of Silane grafted aramid fibre and Nano-silica toughened epoxy composite. SILICON 13(6), 1741–1750 (2021)

    Article  CAS  Google Scholar 

  35. N. Nosrati, A. Zabett, S. Sahebian, Long-term creep behaviour of E-glass/epoxy composite: time–temperature superposition principle. Plast. Rubber Compos. 49(6), 254–262 (2020)

    Article  CAS  Google Scholar 

  36. M. Appadurai, F.I.E. Raj, T. Lurthu Pushparaj, Sisal fiber-reinforced polymer composite-based small horizontal axis wind turbine suited for urban applications—a numerical study. Emerg. Mater. 5(2), 565–578 (2022)

    Article  CAS  Google Scholar 

  37. T. Gentils, L. Wang, A. Kolios, Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl. Energy 199, 187–204 (2017)

    Article  Google Scholar 

  38. S.D. Vijaya Kumar, L.Y.M. Kai, T. Arumugam, S. Karuppanan, A review of finite element analysis and artificial neural networks as failure pressure prediction tools for corroded pipelines. Materials 14(20), 6135 (2021)

    Article  CAS  Google Scholar 

  39. E. Raj, M. Appadurai, E. Rani, I. Jenish, Finite-element design and analysis of switched reluctance motor for automobile applications. Multiscale Multidiscip. Model. Exp. Des. 5, 1–9 (2022)

    Article  Google Scholar 

  40. M. Appadurai, E. Fantin Irudaya Raj, Finite element analysis of lightweight robot fingers actuated by pneumatic pressure. In Recent Advances in Manufacturing, Automation, Design and Energy Technologies (Springer, Singapore, 2022), pp. 379–385

  41. L. Wang, A. Kolios, T. Nishino, P.L. Delafin, T. Bird, Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Compos. Struct. 153, 123–138 (2016)

    Article  Google Scholar 

  42. A. Albanesi, V. Fachinotti, I. Peralta, B. Storti, C. Gebhardt, Application of the inverse finite element method to design wind turbine blades. Compos. Struct. 161, 160–172 (2017)

    Article  Google Scholar 

  43. M. Appadurai, E.F.I. Raj, K. Venkadeshwaran, Finite element design and thermal analysis of an induction motor used for a hydraulic pumping system. Mater. Today Proc. 45, 7100–7106 (2021)

    Article  Google Scholar 

  44. F.I.E. Raj, M. Balaji, Analysis and classification of faults in switched reluctance motors using deep learning neural networks. Arab. J. Sci. Eng. 46(2), 1313–1332 (2021)

    Article  Google Scholar 

  45. B.A. Praveena, N. Santhosh, D.P. Archana, A. Buradi, E. Raj, C. Chanakyan et al., Influence of nanoclay filler material on the tensile, flexural, impact, and morphological characteristics of jute/E-glass fiber-reinforced polyester-based hybrid composites: experimental, modeling, and optimization study. J. Nanomater. 2022(2022). https://doi.org/10.1155/2022/1653449

    Article  Google Scholar 

  46. J.R. Albert, T. Kaliannan, G. Singaram, F.I.R.E. Sehar, M. Periasamy, S. Kuppusamy, A remote diagnosis using variable fractional order with reinforcement controller for solar-MPPT intelligent system. In Photovoltaic Systems (CRC Press, Boca Raton, 2022), pp. 45–64

  47. E.F.I. Raj, A pilot survey of machine learning techniques in smart grid operations of power systems. Eur. J. Mol. Clin. Med. 7(07), 203–210 (2020)

    Google Scholar 

  48. https://www.energy-electronics.com/category/renewable-energy. Accessed 2 Oct 2022

  49. E.F.I. Raj, Available transfer capability (ATC) under deregulated environment. J. Power Electron. Power Syst. 6(2), 85–88 (2016)

    Google Scholar 

  50. O.I. Okogwu, F.A. Elebe, G.N. Nwonumara, An efficient low-cost–low-technology whole-household water collection and treatment system. Water Supply 22(2), 1327–1336 (2022)

    Article  CAS  Google Scholar 

  51. I. Jenish, A.F. Sahayaraj, M. Appadurai, E.F. Irudaya Raj, P. Suresh, Sea sand abrasive wear of red mud micro particle reinforced Cissus quadrangularis stem fiber/epoxy composite. J. Nat. Fibers (2022). https://doi.org/10.1080/15440478.2022.2087131

    Article  Google Scholar 

  52. I. Jenish, A.F. Sahayaraj, V. Suresh, M. Appadurai, E.F. Irudaya Raj, O. Nasif et al., Analysis of the hybrid of mudar/snake grass fiber-reinforced epoxy with nano-silica filler composite for structural application. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/7805146

    Article  Google Scholar 

  53. I. Jenish, A. Felix Sahayaraj, M. Appadurai, E. Fantin Irudaya Raj, P. Suresh, T. Raja et al., Fabrication and experimental analysis of treated snake grass fiber reinforced with polyester composite. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/6078155

    Article  Google Scholar 

  54. B. Zhang, L. Jia, M. Tian, N. Ning, L. Zhang, W. Wang, Surface and interface modification of aramid fiber and its reinforcement for polymer composites: a review. Eur. Polym. J. 147, 110352 (2021)

    Article  CAS  Google Scholar 

  55. H. Alphan, Modelling potential visibility of wind turbines: a geospatial approach for planning and impact mitigation. Renew. Sustain. Energy Rev. 152, 111675 (2021)

    Article  Google Scholar 

  56. https://www.ccaco.com/blog/eco-gyms-powered-by-their-own-members. Accessed 1 Oct 2022

  57. Z. Gao, Y. Li, T. Wang, W. Shen, X. Zheng, S. Pröbsting et al., Modelling the nacelle wake of a horizontal-axis wind turbine under different yaw conditions. Renew. Energy 172, 263–275 (2021)

    Article  Google Scholar 

  58. A. Al-Quraan, H. Al-Masri, M. Al-Mahmodi, A. Radaideh, Power curve modelling of wind turbines—a comparison study. IET Renew. Power Gener. 16(2), 362–374 (2022)

    Article  Google Scholar 

  59. Z. Yu, J. Amdahl, M. Rypestøl, Z. Cheng, Numerical modelling and dynamic response analysis of a 10 MW semi-submersible floating offshore wind turbine subjected to ship collision loads. Renew. Energy 184, 677–699 (2022)

    Article  Google Scholar 

  60. L.J. Stival, J.R. Brinkerhoff, J.M. Vedovotto, F.O. de Andrade, Wake modeling and simulation of an experimental wind turbine using large eddy simulation coupled with immersed boundary method alongside a dynamic adaptive mesh refinement. Energy Convers. Manag. 268, 115938 (2022)

    Article  Google Scholar 

  61. A. Kampitsis, K. Kapasakalis, L. Via-Estrem, An integrated FEA-CFD simulation of offshore wind turbines with vibration control systems. Eng. Struct. 254, 113859 (2022)

    Article  Google Scholar 

  62. B. Hand, G. Kelly, A. Cashman, Structural analysis of an offshore vertical axis wind turbine composite blade experiencing an extreme wind load. Mar. Struct. 75, 102858 (2021)

    Article  Google Scholar 

  63. O. Lagdani, M. Tarfaoui, M. Nachtane, M. Trihi, H. Laaouidi, Modal analysis of an iced offshore composite wind turbine blade. Wind Eng. 46(1), 134–149 (2022)

    Article  Google Scholar 

  64. M. Appadurai, E. Raj, I. Jenish, Application of aluminium oxide–water nanofluids to augment the performance of shallow pond: a numerical study. Process Integr. Optim. Sustain. 6(1), 211–222 (2022)

    Article  Google Scholar 

  65. V.S. Chandrika, J.S. Isaac, J. Daniel, K. Kathiresan, C.T. Muthiah, E.F.I. Raj, R. Subbiah, Experimental investigation of the solar distiller using nano-black paint for different water depths. Mater. Today Proc. 56, 1406–1410 (2022)

    Article  CAS  Google Scholar 

  66. A.C. Sijini, E. Fantin, L.P. Ranjit, Switched reluctance motor for hybrid electric vehicle. Middle East J. Sci. Res. 24(3), 734–739 (2016)

    Google Scholar 

  67. T. Sellami, H. Berriri, A.M. Darcherif, S. Jelassi, M.F. Mimouni, Modal and harmonic analysis of three-dimensional wind turbine models. Wind Eng. 40(6), 518–527 (2016)

    Article  Google Scholar 

  68. E. Fantin Irudaya Raj, M. Appadurai, Minimization of torque ripple and incremental of power factor in switched reluctance motor drive. In Recent Trends in Communication and Intelligent Systems (Springer, Singapore, 2021), pp. 125–133

  69. B.A. Praveena, N. Santhosh, D.P. Archana, A. Buradi, E. Raj, C. Chanakyan, A. Elfasakhany, D. Basheer, Influence of nanoclay filler material on the tensile, flexural, impact, and morphological characteristics of jute/E-glass fiber-reinforced polyester-based hybrid composites: experimental, modeling, and optimization study. J. Nanomater. (2022). https://doi.org/10.1155/2022/1653449

    Article  Google Scholar 

  70. K. Priyadarsini, E.F.I. Raj, A.Y. Begum, V. Shanmugasundaram, Comparing DevOps procedures from the context of a systems engineer. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.09.624

    Article  Google Scholar 

  71. M. Rahman, Z.C. Ong, W.T. Chong, S. Julai, X.W. Ng, Wind turbine tower modeling and vibration control under different types of loads using ant colony optimized PID controller. Arab. J. Sci. Eng. 44(2), 707–720 (2019)

    Article  Google Scholar 

Download references

Funding

The authors received no funding for this study from any entity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fantin Irudaya Raj.

Ethics declarations

Conflict of interest

The authors confirm that they have no known financial or personal conflicts that would have affected the research presented in this paper.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantin Irudaya Raj, E., Appadurai, M., Lurthu Pushparaj, T. et al. Wind turbines with aramid fiber composite wind blades for smart cities like urban environments: Numerical simulation study. MRS Energy & Sustainability 10, 139–156 (2023). https://doi.org/10.1557/s43581-022-00060-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-022-00060-w

Keywords

Navigation