[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Sisal fiber-reinforced polymer composite-based small horizontal axis wind turbine suited for urban applications—a numerical study

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Wind turbines harness the wind’s kinetic energy and convert it to electricity. Large horizontal axis wind turbines (HAWT) are typically located on the outskirts of cities, near the seashore, or offshore in the ocean. For urban areas, small HAWTs are preferred compared with their counterparts. HAWTs are often constructed from materials such as conventional steel, aluminium alloys, or fiber-reinforced composites. Due to intrinsic advantages such as environmental friendliness and low cost, natural fiber composites are now favored over synthetic fiber composites. The present work proposed a sisal fiber-reinforced polymer composite-based HAWT for urban applications. The NACA 4412 wind blade profile has been chosen and it is modeled using the CATIA V5 simulation package. The numerical analysis of the proposed wind blade is carried out using the ANSYS mechanical workbench. The structural, modal, and harmonic analyses of the proposed wind turbine under different loading conditions are performed. Through these analyses, maximum deflection occurs (0.64 mm at 100 N load) at the tip of the wind blade, natural frequency (21.46 Hz for first resonant condition), and amplitude of different mode shapes are identified. Finally, the findings of the aforementioned evaluations of the proposed wind turbine are compared to the results of structural steel and other natural fiber composite-based wind turbines. The supremacy of the proposed wind turbine is acknowledged using numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Ferguson, W. Wilkinson, R. Hill, Electricity use and economic development. Energy Polic. 28(13), 923–934 (2000)

    Article  Google Scholar 

  2. H. Dong, J. Liu, T. Meng, M. Li, X. Chen, N. Li, H. Alavi, Energy generation and storing electrical energy in an energy hybrid system consisting of solar thermal collector, Stirling engine and thermoelectric generator. Sustain. Cities Soc. 75, 103357 (2021)

    Article  Google Scholar 

  3. B.S. Pali, S. Vadhera, A novel pumped hydro-energy storage scheme with wind energy for power generation at constant voltage in rural areas. Renew. Energy 127, 802–810 (2018)

    Article  Google Scholar 

  4. J.K. Kaldellis, D. Zafirakis, The wind energy (r) evolution: a short review of a long history. Renew. Energy 36(7), 1887–1901 (2011)

    Article  Google Scholar 

  5. M. Appadurai, E.F.I. Raj, Finite element analysis of composite wind turbine blades, in 2021 7th International Conference on Electrical Energy Systems (ICEES). (IEEE, New Jersey, 2021), pp. 585–589

    Chapter  Google Scholar 

  6. S. Boria, C. Santulli, E. Raponi, F. Sarasini, J. Tirillò, Evaluation of a new green composite solution for wind turbine blades. Multiscale Multidiscipl. Model. Exp. Des. 2(2), 141–150 (2019)

    Article  Google Scholar 

  7. L. Thomas, M. Ramachandra, Advanced materials for wind turbine blade-a review. Mater. Today: Proc. 5(1), 2635–2640 (2018)

    CAS  Google Scholar 

  8. M. Appadurai, E. Raj, Epoxy/silicon carbide (sic) nanocomposites based small scale wind turbines for urban applications. Int. J. Energy Environ. Eng. 2021, 1–16 (2021)

    Google Scholar 

  9. P.J. Schubel, R.J. Crossley, Wind turbine blade design. Energies 5(9), 3425–3449 (2012). https://doi.org/10.3390/en5093425

    Article  Google Scholar 

  10. P.S. Veers, T.D. Ashwill, H.J. Sutherland, D.L. Laird, D.W. Lobitz, D.A. Griffin, J.L. Richmond, Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy: Int. J. Progr. Appl. Wind Power Conv. Technol. 6(3), 245–259 (2003). https://doi.org/10.1002/we.90

    Article  Google Scholar 

  11. A.K. Mohanty, M. Misra, L.T. Drzal, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10(1), 19–26 (2002). https://doi.org/10.1023/A:1021013921916

    Article  CAS  Google Scholar 

  12. F. Ahmad, H.S. Choi, M.K. Park, A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol. Mater. Eng. 300(1), 10–24 (2015)

    Article  CAS  Google Scholar 

  13. P. Wongsriraksa, K. Togashi, A. Nakai, H. Hamada, Continuous natural fiber reinforced thermoplastic composites by fiber surface modification. Adv. Mech. Eng. 5, 685104 (2013)

    Article  Google Scholar 

  14. M. Sood, D. Dharmpal, V.K. Gupta, Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite. Mater. Today: Proc. 2(4–5), 3149–3155 (2015)

    CAS  Google Scholar 

  15. A.E. Bekele, H.G. Lemu, M.G. Jiru, Experimental study of physical, chemical and mechanical properties of enset and sisal fibers. Polymer Testing 106, 107453 (2022)

    Article  CAS  Google Scholar 

  16. J.T. Kim, A.N. Netravali, Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos. A Appl. Sci. Manuf. 41(9), 1245–1252 (2010). https://doi.org/10.1016/j.compositesa.2010.05.007

    Article  CAS  Google Scholar 

  17. P. Vimalanathan, G. Suresh, M. Rajesh, R. Manikandan, S.K. Rajesh Kanna, V. Santhanam, A study on mechanical and morphological analysis of banana/sisal fiber reinforced IPN composites. Fibers Polymers 22(8), 2261–2268 (2021)

    Article  CAS  Google Scholar 

  18. D. Liu, J. Song, D.P. Anderson, P.R. Chang, Y. Hua, Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19(5), 1449–1480 (2012). https://doi.org/10.1007/s10570-012-9741-1

    Article  CAS  Google Scholar 

  19. C. Alves, A.J. Silva, L.G. Reis, M. Freitas, L.B. Rodrigues, D.E. Alves, Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 18(4), 313–327 (2010). https://doi.org/10.1016/j.jclepro.2009.10.022

    Article  CAS  Google Scholar 

  20. S.J. Kim, J.B. Moon, G.H. Kim, C.S. Ha, Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym. Testing 27(7), 801–806 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.002

    Article  CAS  Google Scholar 

  21. V.G. Geethamma, K.T. Mathew, R. Lakshminarayanan, S. Thomas, Composite of short coir fibers and natural rubber: effect of chemical modification, loading and orientation of fiber. Polymer 39(6–7), 1483–1491 (1998). https://doi.org/10.1016/S0032-3861(97)00422-9

    Article  CAS  Google Scholar 

  22. M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Tensile properties of chemically treated hemp fibers as reinforcement for composites. Compos. B Eng. 53, 362–368 (2013). https://doi.org/10.1016/j.compositesb.2013.05.048

    Article  CAS  Google Scholar 

  23. T. Huber, J. Müssig, Fiber matrix adhesion of natural fibers cotton, flax and hemp in polymeric matrices analyzed with the single fiber fragmentation test. Compos. Interfaces 15(2–3), 335–349 (2008). https://doi.org/10.1163/156855408783810948

    Article  CAS  Google Scholar 

  24. I. Jenish, A.F. Sahayaraj, V. Suresh, M. Appadurai, E.F. Irudaya Raj, O. Nasif, ..., A.K. Kumaravel, Analysis of the hybrid of mudar/snake grass fiber-reinforced epoxy with nano-silica filler composite for structural application. Adv. Mater. Sci. Eng. 2022, 1–10 (2022)

  25. I. Jenish, A. Felix Sahayaraj, M. Appadurai, E. FantinIrudaya Raj, P. Suresh, T. Raja, ..., V. Manikandan, Fabrication and experimental analysis of treated snake grass fiber reinforced with polyester composite. Adv. Mater. Sci. Eng. 2021, 1–13 (2021)

  26. C.M. Meenakshi, R. Ravi, J.S. Leon, M. Selvaraj, K. Manikandan, G. Suresh, R. Lavanya, Evaluation of improvement in performance of FRP composite by using Al (OH3) as secondary reinforcement. J Phys Conf Ser 1921(1), 012092 (2021)

    Article  CAS  Google Scholar 

  27. M. Appadurai, E. Raj, I. Jenish, Application of aluminium oxide–water nanofluids to augment the performance of shallow pond: a numerical study. Proc Integr Optim Sustain 2021, 1–12 (2021)

    Google Scholar 

  28. H. Mohit, H.B. Vishwanath, G.H. Kumar, V.A.M. Selvan, M.R. Sanjay, S. Siengchin, Applications and drawbacks of bamboo fiber composites, in Bamboo fiber composites. (Springer, Singapore, 2021), pp. 247–270. https://doi.org/10.1007/978-981-15-8489-3_14

    Chapter  Google Scholar 

  29. N. Sgriccia, M.C. Hawley, M. Misra, Characterization of natural fiber surfaces and natural fiber composites. Compos. A Appl. Sci. Manuf. 39(10), 1632–1637 (2008). https://doi.org/10.1016/j.compositesa.2008.07.007

    Article  CAS  Google Scholar 

  30. A. Ashori, Wood–plastic composites as promising green-composites for automotive industries! Biores. Technol. 99, 4661–4667 (2008)

    Article  CAS  Google Scholar 

  31. M.R. Rezapour, C.W. Myung, J. Yun, A. Ghassami, N. Li, S.U. Yu, ..., K.S. Kim, Graphene and graphene analogs toward optical, electronic, spintronic, green-chemical, energy-material, sensing, and medical applications. ACS Appl. Mater. Interfaces. 9(29), 24393–24406 (2017)

  32. R.M. Rowell, Property enhanced natural fiber composite materials based on chemical modification, in Science and technology of polymers and advanced materials. (Springer, Boston, 1998), pp. 717–732. https://doi.org/10.1007/978-1-4899-0112-5_63

    Chapter  Google Scholar 

  33. A. Barua, S. Jeet, D.K. Bagal, P. Satapathy, P.K. Agrawal, Evaluation of mechanical behavior of hybrid natural fiber reinforced nano sic particles composite using hybrid Taguchi-CoCoSo method. Int. J. Innov. Technol. Explor. Eng. 8, 3341–3345 (2019). https://doi.org/10.35940/ijitee.J1232.0881019

    Article  Google Scholar 

  34. E. FantinIrudaya Raj, M. Appadurai, Minimization of torque ripple and incremental of power factor in switched reluctance motor drive, in Recent Trends in Communication and Intelligent Systems. (2021), pp. 125–133. https://doi.org/10.1007/978-981-16-0167-5_14

    Chapter  Google Scholar 

  35. M. Appadurai, E. FantinIrudaya Raj, K. Venkadeshwaran, Finite element design and thermal analysis of an induction motor used for a hydraulic pumping system. Mater. Today Proc. 45, 7100–7106 (2021). https://doi.org/10.1016/j.matpr.2021.01.944

    Article  Google Scholar 

  36. E. Raj, M. Appadurai, E. Rani, I. Jenish, Finite-element design and analysis of switched reluctance motor for automobile applications. Multisc. Multidiscipl. Model. Exp. Des. 2022, 1–9 (2022)

    Google Scholar 

  37. M. Appadurai, E. FantinIrudaya Raj, Finite element analysis of lightweight robot fingers actuated by pneumatic pressure, in Recent Advances in Manufacturing, Automation, Design and Energy Technologies. (Springer, Singapore, 2022), pp. 379–385

    Chapter  Google Scholar 

  38. A.C. Sijini, E. Fantin, L.P. Ranjit, Switched reluctance motor for hybrid electric vehicle. Middle-East J. Sci. Res. 24(3), 734–739 (2016)

    Google Scholar 

  39. E.F.I. Raj, V. Kamaraj, Neural network based control for switched reluctance motor drive, in 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN). (2013). https://doi.org/10.1109/ice-ccn.2013.6528586

    Chapter  Google Scholar 

  40. E. FantinIrudaya Raj, M. Balaji, Analysis and classification of faults in switched reluctance motors using deep learning neural networks. Arab. J. Sci. Eng. 46(2), 1313–1332 (2020). https://doi.org/10.1007/s13369-020-05051-y

    Article  Google Scholar 

  41. J. Holbery, D. Houston, Natural-fiber-reinforced polymer composites in automotive applications. Jom 58(11), 80–86 (2006). https://doi.org/10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  42. A. Valadez-Gonzalez, J.M. Cervantes-Uc, R.J.I.P. Olayo, P.J. Herrera-Franco, Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos. B Eng. 30(3), 309–320 (1999). https://doi.org/10.1016/S1359-8368(98)00054-7

    Article  Google Scholar 

  43. S. Alsubari, M.Y.M. Zuhri, S.M. Sapuan, M.R. Ishak, R.A. Ilyas, M.R.M. Asyraf, Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers 13(3), 423 (2021). https://doi.org/10.3390/polym13030423

    Article  CAS  Google Scholar 

  44. J.J. Sargianis, H.I. Kim, E. Andres, J. Suhr, Sound and vibration damping characteristics in natural material based sandwich composites. Compos. Struct. 96, 538–544 (2013). https://doi.org/10.1016/j.compstruct.2012.09.006

    Article  Google Scholar 

  45. G.V. Prasanna, T. Jayadeep, N. Poornabhodha, Chemical treatment, influence of fiber content, and optimization of hybrid natural fiber-reinforced composites, in Advances in Materials and Manufacturing Engineering. (Springer, Singapore, 2021), pp. 325–335. https://doi.org/10.1007/978-981-15-6267-9_38

    Chapter  Google Scholar 

  46. M. Rajesh, J. Kandasamy, D.M. Reddy, V. Mugeshkannan, V.R. Kar, Experimental characterization for natural fiber and hybrid composites, in Structural Health Monitoring System for Synthetic, Hybrid and Natural Fiber Composites. (Springer, Singapore, 2021), pp. 71–83. https://doi.org/10.1007/978-981-15-8840-2_6

    Chapter  Google Scholar 

  47. B.V. Ramnath, S. Rajesh, C. Elanchezhian, G.P.S. Kumar, Determination of impact and hardness properties of neem-kenaf fiber reinforced polymer composites, in Advances in Materials and Manufacturing Engineering. (Springer, Singapore, 2021), pp. 293–302. https://doi.org/10.1007/978-981-15-6267-9_35

    Chapter  Google Scholar 

  48. R. Gasch, J. Twele, Scaling wind turbines and rules of similarity, in Wind Power Plants. (Springer, Berlin, 2012), pp. 257–271

    Chapter  Google Scholar 

  49. A. Pourrajabian, Effect of blade profile on the external/internal geometry of a small horizontal axis wind turbine solid/hollow blade. Sustain. Energy Technol. Assess. 51, 101918 (2022)

    Google Scholar 

  50. M. Barzegar, M.D. Moallem, M. Mokhtari, Progressive damage analysis of an adhesively bonded composite T-joint under bending, considering micro-scale effects of fiber volume fraction of adherends. Compos. Struct. 258, 113374 (2021)

    Article  CAS  Google Scholar 

  51. N.S. Çetin, M.A. Yurdusev, R. Ata, A. Özdamar, Assessment of optimum tip speed ratio of wind turbines. Math. Comput. Appl. 10(1), 147–154 (2005)

    Google Scholar 

  52. D. Hilewit, E. Matida, A. Fereidooni, H. Abo el Ella, F. Nitzsche, Numerical investigations of a novel vertical axis wind turbine using Blade Element Theory-Vortex Filament Method (BET-VFM). Energy Sci. Eng. 7(6), 2498–2509 (2019)

    Article  Google Scholar 

  53. P. Haldar, N. Modak, G. Sutradhar, Comparative evaluation of mechanical properties of sisal-epoxy composites with and without addition of aluminium powder. Mater. Today: Proc. 4(2), 3397–3406 (2017)

    Google Scholar 

  54. D.K. Madheswaran, M. Thangamuthu, S. Gopi, R. Krishna, S. Mohan, A. Jayakumar, ..., S.T.N. Hussain, A comparative simulation analysis of conventional and composite leaf spring, in International Conference on Manufacturing Engineering and Materials. (Springer, Cham, 2021), pp. 270–281

  55. G. Suresh, T. Srinivasan, S. Meganathan, P. Ramu, R. Ravi, G.S. Krishnan, S. Vivek, Experimental analysis of compressive behavior of E-Glass fiber reinforced IPN (vinyl ester/polyurethane) composite pipes. IOP Conf. Ser. Mater. Sci. Eng. 988(1), 012011 (2020)

    Article  CAS  Google Scholar 

  56. K. Senthilnathan, G. Suresh, S. Ilaiyavel, R. Ravi, S. Srinivasan, Experimental investigation of polymer matrix composites gears with different fiber proportions. Int. J. Veh. Struct. Syst 12(2), 212–216 (2020)

    Google Scholar 

  57. S.A. Chukwunwike, L.A. Ibe, J.O. Agu, M.A. Omeife, Analytical approach in materials selection of natural fibre reinforced polymer composites for car door handle. Int. J. Sci. Res. Eng. Dev. 3(2), 914–924 (2020)

  58. M. Ramesh, K. Palanikumar, K.H. Reddy, Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites. Proc. Eng. 51, 745–750 (2013)

    Article  CAS  Google Scholar 

  59. D.K. Hale, The physical properties of composite materials. J. Mater. Sci. 11(11), 2105–2141 (1976)

    Article  CAS  Google Scholar 

  60. W.C. Zhang, K.E. Evans, Numerical prediction of the mechanical properties of anisotropic composite materials. Comput. Struct. 29(3), 413–422 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by the corresponding author. All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. Fantin Irudaya Raj.

Ethics declarations

Consent to participation and consent to publish

Not applicable.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appadurai, M., Fantin Irudaya Raj, E. & LurthuPushparaj, T. Sisal fiber-reinforced polymer composite-based small horizontal axis wind turbine suited for urban applications—a numerical study. emergent mater. 5, 565–578 (2022). https://doi.org/10.1007/s42247-022-00375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00375-x

Keywords

Navigation