Abstract—
Different trends observed during cryotropic gelation of 8% poly(vinyl alcohol) aqueous solutions (preheated to 25, 55, and 85°С) at rapid cooling and freezing of the system have been examined. The data of rheology, thermomechanical analysis, attenuated total reflection, and scanning electron microscopy have revealed that the macroporous poly(vinyl alcohol) cryogels formed under above conditions differ in elastoplastic properties, swelling ability in water, degree of microcrystallinity, and pores size. The obtained results have been confirmed by the study of diffusional release of stabilized silver nanoparticles from the cryogels. It has been shown that the macropores walls in the cryogel network consist of spherical formations, likely contacting microgel particles formed during the liquid-phase separation of the polymer solution prior to the cryotropic gelation stage.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
Hydrogels in Medicine and Pharmacy, Vol. 1, Ed. by N. A. Peppas (CRC Press, New York, 2019).
Ch. M. Hassan and N. A. Peppas, Macromolecules 33, 2472 (2000).
Polymeric Cryogels Macroporous Gels with Remarkable Properties, Ed. by O. Okay (Springer, New York, 2014).
Polymeric Gels. Characterization, Properties and Biomedical Applications, Ed. by K. Pal and I. Banerjee (Elsevier, Cambridge, 2018).
Biomedical Hydrogels Biochemistry, Manufacture and Medical Applications, Ed. by S. Rimmer (Woodhead Publ. Ltd., Oxford, Cambridge, 2011).
N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, Adv. Mater. 18, 1345 (2006).
H. Levine, and L. Slade, Water Relationships in Food (Springer, New York 1991).
Ch. M. Hassan and N. A. Peppas, Adv. Polym. Sci. 153, 65 (2000).
R. S. Harland and N. A. Peppas, J. Pharm. Sci. 78 (2), 146 (1989).
B. V. Slaughter, Sh. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Adv. Mater. 21, 3307 (2009).
M. Kobayashi, J. Toguchida, and M. Oka, Biomaterials 24 (4), 639 (2003).
M. I. Baker, S. P. Walsh, Z. Schwartz, and B. D. Boyan, J. Biomed. Mater. Res. 100B, 1451 (2012).
Biomaterials for Treating Skin Loss, Ed. by D. Orgill and C. Blanco (CRC Press Woodhead Publ. Ltd., Cambridge, 2009).
S.-H. Hyon, W.-I. Cha, Y. Ikada, M. Kita, Y. Ogura, and Y. Honda, J. Biomater. Sci., Polym. Ed. 5 (5), 397 (1994).
A. Kumar and S. S. Han, Int. J. Polym. Mater. Polym. Biomater. 66 (4), 159 (2017).
M. Teodorescu, M. Bercea, and S. Morariu, Polym. Rev. 58 (2), 247 (2018).
L. Dai and Sh. Yu, Polym. Adv. Technol. 14, 449 (2003).
V. I. Lozinsky, Russ. Chem. Rev. 67, 573 (1998).
W. Wan, A. D. Bannerman, L. Yang, and H. Mak, Adv. Polym. Sci. 263, 283 (2014).
Ph. Molyneux, Water-Soluble Synthetic Polymers: Properties and Behavior (CRC Press, Boca Raton London, New York, 1984).
J. L. Valentin, D. Lopez, R. Hernandez, C. Mijangos, and K. Saalwachter, Macromolecules 42, 263 (2009).
V. I. Klenin, O. V. Klenina, V. A. Kolchanov, B. I. Shvartsburd, S. Ya. Frenkel’, Vysokomol. Soedin., Ser. A 16 (10), 2351 (1974).
T. Nakaoki and H. Yamashita, J. Mol. Struct. 875, 282 (2008).
Bartenev, G.M. and Frenkel’, S.Ya., Fizika Polimerov (Physics of Polymers) (Khimiya, Leningrad, 1990) [in Russian].
R. Hodge, G. Edward, and G. Simon, Polymer 37 (8), 1371 (1996).
H. Hatakeyama and T. Hatakeyama, Thermochim. Acta 308, 3 (1998).
K. Kawanishi, M. Komatsu, and T. Inoue, Polymer 28, 980 (1987).
E. Otsuka, M. Sugiyama, and A. Suzuki, J. Phys.: Conf. Ser. 247, 1 (2010).
T. Kanaya, N. Takahashi, H. Takeshita, M. Ohkura, K. Nishida, and K. Kaji, Polym. J. 44, 83 (2012).
O. N. Tretinnikov and S. A. Zagorskaya, J. Appl. Spectroscopy 78 (6), 904 (2012).
A. Bhattacharya and P. Ray, J. Appl. Polym. Sci. 93, 122 (2004).
Water Soluble Polymers, Ed. by Z. Amjad (Plenum Press, New York, 1998).
Polymeric Cryogels. Macroporous Gels with Remarkable Properties. Advances in Polymer Science, 263, Ed. by O. Okay (Springer Int. Publ., Switzerland, 2014).
N. A. Peppas and E. W. Merrill, J. Appl. Polym. Sci. 21, 1763 (1977).
K. Arai, M. Okuzono, and T. Shikata, Macromolecules 48 (5), 1573 (2015).
G. Paradossi, I. Finelli, F. Natali, M. T. F. Telling, and E. Chiessi, Polymers 3, 1805 (2011).
Ch. Wu, Polymer 51, 4452 (2010).
V. J. Klenin and I. V. Fedusenko, Polym. Sci., Ser. A 45 (12), 1231 (2003).
O. V. Khorolskyi, Ukr. J. Phys 63 (2), 144 (2018).
Water: Structure, State, Solvation, Ed. by A. M. Kutepova (Nauka, Moscow, 2003) [in Russian].
L. Zhao, K. Ma, and Z. Yang, Int. J. Mol. Sci. 16, 8454 (2015).
T. Hatakeyama, F. X. Quinn, and H. Hatakeyama, Carbohydr. Polym. 30, 155 (1996).
D. R. Moberg, D. Becker, Ch. W. Dierking, F. Zurheide, B. Bandow, U. Buck, A. Hudait, V. Molinero, F. Paesani, and T. Zeuch, Proc. Natl. Acad. Sci. USA (PNAS) 116, 24413 (2019).
V. I. Lozinsky, E. S. Vainerman, L. V. Domotenko, A. M. Mamtsis, E. F. Titova, E. M. Belavtseva, and S. V. Rogozhin, Colloid Polym. Sci. 264, 19 (1986).
N. Samoilova, E. Kurskaya, M. Krayukhina, A. Askadsky, and I. Yamskov, J. Phys. Chem. B 113, 3395.
V. A. Kargin and T. I. Sogolova, Zh. Fiz. Khim. 23, 540 (1949).
E. H. Lee and J. R. Radok, J. Appl. Mech. E 27, 438 (1960).
Sh. Agnihotri, S. Mukherji, and S. Mukherji, RSC Adv. 4, 3974 (2014).
C. Hara and M. Matsuo, Polymer 36 (3), 603 (1995).
P. J. Willcox, D. W. Howie, K. Schmidt-Rohr, D. A. Hoagland, S. P. Gido, S. Pudjijanto, L. W. Kleiner, and S. Venkatraman, J. Polym. Sci., Polym. Phys. Ed. 37, 3438 (1999).
T. Hatakeyema, J. Uno, Ch. Yamada, A. Kishi, and H. Hatakeyama, Thermochim. Acta 431, 144 (2005).
W. Li, F. Xue, and R. Cheng, Polymer 46, 12026 (2005).
J. D. Brownridge, Am. J. Phys. 79 (1), 78 (2011).
T. Hatakeyama, M. Tanaka, and H. Hatakeyama, J. Biomater. Sci., Polym. Ed. 21, 1865 (2010).
T. Hatakeyama, A. Yamauchi, and H. Hatakeyama, Eur. Polym. J. 23, 361 (1987).
N. A. Peppas and E. W. Merrill, J. Polym. Sci. 14, 441 (1976).
E. Chiessi, F. Cavalieri, and G. Paradossi, J. Phys. Chem. B 109 (16), 8091 (2005).
V. J. Klenin, Thermodynamics of Systems Containing Flexible-Chain Polymers (Elsevier, Amsterdam, 1999).
S. Ogawa, M. Koga, and S. Osanai, Chem. Phys. Lett. 480, 86 (2009).
T. Inada and S.-S. Lu, Chem. Phys. Lett. 394, 361 (2004).
P. M. Naullage and V. Molinero, J. Am. Chem. Soc. 142, 4356 (2020).
S. Wu, Z. He, J. Zang, Sh. Jin, Z. Wang, J. Wang, Y. Yao, and J. Wang, Sci. Adv. 5, 1 (2019).
S. K. Reddy, S. C. Straight, P. Bajaj, C. H. Pham, M. Riera, D. R. Moberg, M. A. Morales, C. Knight, A. W. Gotz, and F. Paesani, J. Chem. Phys. 145, 194504-1 (2016).
A. V. Khakhalin, O. N. Gradoboeva, and Ya. N. Shirshov, Moscow Univ. Phys. Bull. 67 (6), 537 (2012).
J. Liu, X. He, and J. Z. H. Zhang, Phys. Chem. Chem. Phys. 19, 11931 (2017).
A. Kholmanskiy, J. Mol. Struct. 1989, 124 (2015).
D. Laage, G. Strinemann, and J. T. Hynes, Sci. China: Phys., Mech. Astron. 53 (6), 1068 (2010).
P. M. Naullage and V. Molinero, J. Am. Chem. Soc. 142, 4356 (2020).
L. Weng, S. L. Stott, and M. Toner, Langmuir 34 (17), 5116 (2017).
V. I. Lozinsky and L. G. Damshkaln, J. Appl. Polym. Sci. 77, 2017 (2000).
Y. Tamai and H. Tanaka, Phys. Rev. E: 59 (5), 5647 (1999).
S. K. Mallapragada and N. A. Peppas, J. Polym. Sci., Polym. Phys. Ed. 34, 1339 (1996).
W. Li, F. Xue, and R. Cheng, Polymer 46, 12026 (2005).
L. Shi and Q. Han, Mol. Simul. 44 (17), 1363 (2018).
F. Auriemma, C. De Rosa, and R. Triolo, Macromolecules 39, 9429 (2006).
ACKNOWLEDGMENTS
The experiments on the formation of poly(vinyl alcohol) hydrogels, investigation of their structure and the effect of thermal treatment on the properties were performed at the Institute of Organoelement Compounds, Russian Academy of Sciences. Calculations and interpretation of the transitions in the thermomechanical curves were performed at Moscow State University of Civil Engineering.
Authors are grateful to A.G. Bogdanov (MSU) for the assistance in the scanning electron microscopy imaging of the objects.
Funding
This study was financially supported by the Ministry of Science and Higher Education of Russian Federation (project “Theoretical-Experimental Engineering of Novel Composite Materials for Safe Maintenance of Buildings and Constructions Under Conditions of Technogenic and Biogenic Hazards,” no. FSWG-2020-0007) (MSUCE) and the State Contact (no. 0085-2019-0004, IOC RAS).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by E. Karpushkin
Rights and permissions
About this article
Cite this article
Kurskaya, E.A., Podorozhko, E.A., Afanasyev, E.S. et al. Trends in Cryotropic Gelation of Semidilute Aqueous Solutions of Poly(vinyl alcohol) with Different Thermal History. Polym. Sci. Ser. A 64, 19–37 (2022). https://doi.org/10.1134/S0965545X22010060
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0965545X22010060