Abstract
The remarkable link between the soliton theory and the group GL,,c,was discovered in the early 1980s by Sato [S] and developed, making use of the spinor formalism, by Date, Jimbo, Kashiwara and Miwa [DJKM1,2,3], [JM]. The basic object that they considered is the KP hierarchy of partial differential equations, which they study through a sequence of equivalent formulations that we describe below. The first formulation is a deformation (or Lax) equation of a formal pseudo-differential operator \(L = \partial + {{u}_{1}}{{\partial }^{{ - 1}}} + {{u}_{2}}{{\partial }^{{ - 2}}} + \ldots\) introduced in [S] and [W1]:
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M.J. Ablowitz and P.A. Clarkson, Solitons,nonlinear evolution equations and inverse scat-tering, London Math. Soc. Lecture Note Series 149, Cambridge University Press, 1991.
M. Boiti, J. Leon, L. Martina and F. Pempinelli, Scattering of localized solitons in the plane, Phys. Lett. 132A (1988), 432–439.
B.A. Dubrovin, Completely integrable Hamiltonian systems related to matrix operators, and abelian manifolds, Funct. Anal. Appl. 11:4 (1977), 28–41.
E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Operator approach to the KadomtsevPetviashvili equation. Transformation groups for soliton equations. III, J. Phys. Soc. Japan 50 (1981), 3806–3812.
E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy, Publ. Res. Inst. Math. Sci. 18 (1982), 1077–1110.
E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, in: Nonlinear integrable systems—classical theory and quantum theory eds M. Jimbo and T. Miwa, World Scientific, 1983, 39–120.
L.A. Dickey, On Segal-Wilson’s definition of the r-function and hierarchies of AKNS-D and mcKP, preprint 1991.
I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23–66.
A.S. Fokas and P.M. Santini, Dromions and boundary value problem for the Davey-Stewartson 1 equation, Physics D44 (1990), 99–130.
R. Hirota, Direct method in soliton theory„ in Solitons, eds. R.K. Bullough and P.J. Caudrey, Springer Verlag, 1980.
J. Hietarinta, R. Hirota, Multidromion solutions of the Davey-Stewartson equation, Phys. Lett A 145 (1990), 237–244.
R. Hernandes Heredero, L. Martinez Alonso and E. Medina Reus, Fusion and fission of dromions in the Davey-Stewartson equation, Phys. Lett. A 152 (1991), 37–41.
M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), 943–1001.
V.G. Kac, Infinite dimensional Lie algebras, Progress in Math., vol. 44, Brikhäuser, Boston, 1983; 2nd ed., Cambridge Univ. Press, 1985; 3d ed., Cambridge Univ. Press, 1990.
V.G. Kac, D. A. Kazhdan, J. Lepowsky, and R.L. Wilson, Realization of the basic representations of the Euclidean Lie algebras, Adv. in Math. 42 (1981), 83–112.
V.G. Kac and D.H. Peterson, 112 constructions of the basic representation of the loop group of Es, in Proc. of the Symposium “Anomalies, Geometry, Topology”, Argonne, eds. W.A. Bardeen, A.R. White, World Scientific, 1985, pp. 276–298.
V.G. Kac and D.H. Peterson, Lectures on the infinite wedge representation and the MKP hierarchy, Sem. Math. Sup., vol. 102, Presses Univ. Montreal, Montreal, 1986, pp. 141–184.
V.G. Kac and A.K. Raina, Bombay lectures on highest weight representations of infinite- dimen-sional Lie algebras, Advanced Ser. in Math. Phys., vol. 2, World Scientific, 1987.
V.G. Kac and M. Wakimoto, Exceptional hierarchies of soliton equations, Proc. Symp. Pure Math. 49 (1989), 191–237.
S. Novikov, S. Manakov, L. Pitaevskii, V. Zakharov, Theory of solitons, Consultants Bureau, 1984.
D.H. Peterson and V.G. Kac, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), 1778–1782.
M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann mani-folds, Res. Inst. Math. Sci. Kokyuroku 439 (1981), 30–46.
G. Segal and G. WilsonLoop groups and equations of KdV type, Inst. Hautes Etudes Sci. Publ. Math. 63 (1985), 1–64.
T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math. 83 (1986), 333–382.
T.H.R. Skyrme, Kinks and the Dirac equation, J. Math. Phys. 12 (1971), 1735–1743.
A.P.E. ten Kroode and M.J. Bergvelt, The homogeneous realization of the basic representation of Aí 11 and the Toda lattice, Lett. Math. Phys. 12 (1986), 139–147.
F. ten Kroode and J. van de Leur, Bosonic and fermionic realizations of the affine algebra glu, Comm. Math. Phys. 137 (1991), 67–107.
K. Ueno and K. Takasaki, Toda lattice hierarchy, Adv. stud. Pure Math., vol. 4, North-Holland, 1984, 1–95.
G. Wilson, On two construction of conservation laws for Lax equations, The Quarterly Journal of Math. 32 (1981), 491–512.
G. Wilson, The r-function of the AKNS equations, preprint, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kac, V.G., van de Leur, J.W. (1993). The n-Component KP Hierarchy and Representation Theory. In: Fokas, A.S., Zakharov, V.E. (eds) Important Developments in Soliton Theory. Springer Series in Nonlinear Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58045-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-58045-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-63450-5
Online ISBN: 978-3-642-58045-1
eBook Packages: Springer Book Archive