[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tight Kernel Bounds for Problems on Graphs with Small Degeneracy

(Extended Abstract)

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

Abstract

Kernelization is a strong and widely-applied technique in parameterized complexity. In a nutshell, a kernelization algorithm for a parameterized problem transforms a given instance of the problem into an equivalent instance whose size depends solely on the parameter. Recent years have seen major advances in the study of both upper and lower bound techniques for kernelization, and by now this area has become one of the major research threads in parameterized complexity.

We consider kernelization for problems on d-degenerate graphs, i.e. graphs such that any subgraph contains a vertex of degree at most d. This graph class generalizes many classes of graphs for which effective kernelization is known to exist, e.g. planar graphs, H-minor free graphs, H-topological minor free graphs. We show that for several natural problems on d-degenerate graphs the best known kernelization upper bounds are essentially tight. In particular, using intricate constructions of weak compositions, we prove that unless NP ⊆ coNP/poly:

  • Dominating Set has no kernels of size O(k (d − 1)(d − 3) − ε) for any ε > 0. The current best upper bound is \(O(k^{(d+1)^2})\).

  • Independent Dominating Set has no kernels of size O(k d − 4 − ε) for any ε > 0. The current best upper bound is O(k d + 1).

  • Induced Matching has no kernels of size O(k d − 3 − ε) for any ε > 0. The current best upper bound is O(k d).

We also give simple kernels for Connected Vertex Cover and Capacitated Vertex Cover of size O(k d) and O(k d + 1) respectively. Both these problems do not have kernels of size O(k d − 1 − ε) unless coNP/poly.

In this extended abstract we will focus on the lower bound for Dominating Set, which we feel is the central result of our study. The proofs of the other results can be found in the full version of the paper.

Partially supported by ERC Starting Grant NEWNET 279352.

A full version of the paper can be found in [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. Journal of the ACM 51(3), 363–384 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M. (Meta) kernelization. In: FOCS, pp. 629–638 (2009)

    Google Scholar 

  4. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: STACS, pp. 165–176 (2011)

    Google Scholar 

  5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 635–646. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of paramterized tractability. Annals of Pure and Applied Logic 84(1), 119–138 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other preprocessing procedures. Theory of Computing Systems 48(4), 803–839 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cygan, M., Grandoni, F., Hermelin, D.: Tight kernel bounds for problems on graphs with small degeneracy. CoRR, abs/1305.4914 (2013)

    Google Scholar 

  9. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization hardness of connectivity problems in d-degenerate graphs. Discrete Applied Mathematics 160(15), 2131–2141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dell, H., Marx, D.: Kernelization of packing problems. In: SODA, pp. 68–81 (2012)

    Google Scholar 

  11. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: STOC, pp. 251–260 (2010)

    Google Scholar 

  12. Diestel, R.: Graph Theory, 3rd edn. Springer-Verlag (2005)

    Google Scholar 

  13. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1999)

    Google Scholar 

  15. Erman, R., Kowalik, L., Krnc, M., Walen, T.: Improved induced matchings in sparse graphs. Discrete Applied Mathematics 158(18), 1994–2003 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fellows, M.R.: The lost continent of polynomial time: Preprocessing and kernelization. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 276–277. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: SODA, pp. 503–510 (2010)

    Google Scholar 

  18. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: STOC, pp. 133–142 (2008)

    Google Scholar 

  19. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  20. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. SIAM Journal on Computing 39(5), 1667–1713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower-bounds for kernelization. In: SODA, pp. 104–113 (2012)

    Google Scholar 

  23. Kanj, I.A., Pelsmajer, M.J., Schaefer, M., Xia, G.: On the induced matching problem. Journal of Computer and System Sciences 77(6), 1058–1070 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  25. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 613–624. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Kratsch, S.: Co-nondeterminism in compositions: a kernelization lower bound for a Ramsey-type problem. In: SODA, pp. 114–122 (2012)

    Google Scholar 

  27. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: Structural properties and algorithms. Mathematical Programming 8(2), 232–248 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Transactions on Algorithms 9(1), 11 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cygan, M., Grandoni, F., Hermelin, D. (2013). Tight Kernel Bounds for Problems on Graphs with Small Degeneracy. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics