Abstract
In this paper, we give evidence for the problems Disjoint Cycles and Disjoint Paths that they cannot be preprocessed in polynomial time such that resulting instances always have a size bounded by a polynomial in a specified parameter (or, in short: do not have a polynomial kernel); these results are assuming the validity of certain complexity theoretic assumptions. We build upon recent results by Bodlaender et al. [3] and Fortnow and Santhanam [13], that show that NP-complete problems that are or-compositional do not have polynomial kernels, unless NP ⊆ coNP/poly. To this machinery, we add a notion of transformation, and thus obtain that Disjoint Cycles and Disjoint Paths do not have polynomial kernels, unless NP ⊆ coNP/poly. We also show that the related Disjoint Cycles Packing problem has a kernel of size O(k logk).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Hoory, S., Linial, N.: The Moore bound for irregular graphs. Graphs and Combinatorics 18, 53–57 (2002)
Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)
Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)
Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171. Springer, Heidelberg (2008)
Bodlaender, H.L., Penninkx, E., Tan, R.B.: A linear kernel for the k-disjoint cycle problem on planar graphs. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 306–317. Springer, Heidelberg (2008)
Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels. Technical Report CS-UU-2008-030, Department of Information and Computer Sciences, Utrecht University, Utrecht, The Netherlands (2008)
Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized tractability. Annals of Pure and Applied Logic 84, 119–138 (1997)
Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic results. SIAM J. Comput. 24, 873–921 (1995)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comp. Sc. 141, 109–131 (1995)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Fernau, H., Fomin, F.V., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: On out-trees with many leaves. In: Albers, S., Marion, J.-Y. (eds.) Proceedings 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, pp. 421–432. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)
Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Proceedings of the 40th Annual Symposium on Theory of Computing, STOC 2008, pp. 133–142. ACM Press, New York (2008)
Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)
Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38, 31–45 (2007)
Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)
Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002)
Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: A parameterized view. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137. Springer, Heidelberg (2004)
Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Series B 63, 65–110 (1995)
Saurabh, S.: Personal communication (2009)
Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 115–119 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodlaender, H.L., Thomassé, S., Yeo, A. (2009). Kernel Bounds for Disjoint Cycles and Disjoint Paths. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-04128-0_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04127-3
Online ISBN: 978-3-642-04128-0
eBook Packages: Computer ScienceComputer Science (R0)