Abstract
End-user systems are increasingly impacted by the exponential growth of data volumes and their processing. Moreover, post-processing operations, essentially dedicated to ergonomic features, require more and more resources. Improving overall performances of embedded relational database management systems (RDBMS) can contribute to deliver better responsiveness of end-user systems while increasing the energy efficiency. In this paper, it is proposed to upgrade SQLite, the most-spreaded embedded RDBMS, with a hybrid CPU/GPU processing engine combined with appropriate data management. With the proposed solution, named CuDB, massively parallel processing is combined with strategic data placement, closer to computing units. Experimental results revealed, in all cases, better performances and power efficiency compared to SQLite with an in-memory database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
SQLite: Most Widely Deployed and Used Database Engine, http://www.sqlite.org/mostdeployed.html.
References
Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing units for scientific computing. In: IPDPS 2009, Sichaun (2009)
Govindaraju, N., Lloyd, B., Wang, W., Lin, M., Manochad, D.: Fast computation of database operations using graphics processors. In: SIGMOD/PODS 2004, Paris, pp. 215–216 (2004)
Fang, R., He, B., Lu, M., Yang, K., Govindaraju, N., Luo, Q., Sander, P.: GPUQP: query co-processing using graphics processors. In: SIGMOD/PODS 2007, Beijing, pp. 1061–1063 (2007)
Zhang, S., He, J., He, B., Lu, M.: Omnidb: towards portable and efficient query processing on parallel CPU/GPU architectures. VLDB Endow. 4(5), 1374–1377 (2013)
Yuan, Y., Lee, R., Zhang, X.: The Yin and Yang of processing data warehousing queries on GPU devices. VLDB Endow. 6(10), 817–828 (2013)
O’Neil, P., O’Neil, B., Chen, X.: Star Schema Benchmark (Revision 3, June 5, 2009). Technical report, UMass/Boston (2009)
Breß, S., Siegmund, N., Bellatreche, L., Saake, G.: An operator-stream-based scheduling engine for effective GPU coprocessing. In: Catania, B., Guerrini, G., Pokorný, J. (eds.) ADBIS 2013. LNCS, vol. 8133, pp. 288–301. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40683-6_22
Heimel, M., Saecker, M., Pirk, H., Manegold, S., Markl, V.: Hardware-oblivious parallelism for in-memory column-stores. PVLDB 6(9), 709–720 (2013)
Yong, K., Karuppiah, E., Chong-Wee See, S.: Galactica: a GPU parallelized database accelerator. In: Third ASE International Conference on Big Data Science and Computing, Beijing (2014)
He, B.X., Yu, J.: High-throughput transaction executions on graphics processors. VLDB Endow. 8(5), 314–325 (2011)
Bakkum, P., Skadron, K.: Accelerating SQL database operations on a GPU with CUDA. In: 3rd Workshop on GPGPU, Pittsburgh, pp. 94–103 (2010)
Cremer, S., Bagein, M., Mahmoudi, S., Manneback, P.: Boosting an embedded relational database management system with graphics processing units. In: DATA 2016, Lisbon, pp. 170–175 (2016)
Kinetica: GPU-accelerated database for real-time analysis of large and streaming datasets. http://www.kinetica.com/
MapD: The World’s Fastest Data Exploration Platform. http://www.mapd.com/
BlazingDB: Blazing GPU Database. http://blazingdb.com/
Cisco has Completed the Acquisition of Parstream. https://lc.cx/orfA
Landaverde, R., Zhang, T., Coskun, A., Herbordt, M.: An investigation of unified memory access performance in CUDA. In: HPEC 2014, Waltham (2014)
van den Braak, G., Mersman, B., Corporaal, H.: Compiletime GPU memory access optimizations. In: ICSAMOS 2010, Samos (2010)
Kaczmarski, K.: Experimental B+-tree for GPU. In: ADBIS 2011, Vienna (2011)
Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.: Fast in-place sorting with CUDA based on Bitonic sort. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 403–410. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14390-8_42
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cremer, S., Bagein, M., Mahmoudi, S., Manneback, P. (2017). Improving Performances of an Embedded Relational Database Management System with a Hybrid CPU/GPU Processing Engine. In: Francalanci, C., Helfert, M. (eds) Data Management Technologies and Applications. DATA 2016. Communications in Computer and Information Science, vol 737. Springer, Cham. https://doi.org/10.1007/978-3-319-62911-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-62911-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62910-0
Online ISBN: 978-3-319-62911-7
eBook Packages: Computer ScienceComputer Science (R0)