[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast In-Place Sorting with CUDA Based on Bitonic Sort

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6067))

Abstract

State of the art graphics processors provide high processing power and furthermore, the high programmability of GPUs offered by frameworks like CUDA increases their usability as high-performance co-processors for general-purpose computing. Sorting is well-investigated in Computer Science in general, but (because of this new field of application for GPUs) there is a demand for high-performance parallel sorting algorithms that fit to the characteristics of modern GPU-architecture.

We present a high-performance in-place implementation of Batcher’s bitonic sorting networks for CUDA-enabled GPUs. We adapted bitonic sort for arbitrary input length and assigned compare/exchange-operations to threads in a way that decreases low-performance global-memory access and thereby greatly increases the performance of the implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kapasi, U.J., Dally, W.J., Rixner, S., Mattson, P.R., Owens, J.D., Khailany, B.: Efficient conditional operations for data-parallel architectures. In: MICRO 33: Proceedings of the 33rd Annual ACM/IEEE International Symposium on Microarchitecture, pp. 159–170. ACM, New York (2000)

    Google Scholar 

  2. Purcell, T.J., Donner, C., Cammarano, M., Jensen, H.W., Hanrahan, P.: Photon mapping on programmable graphics hardware. In: HWWS 2003: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, Aire-la-Ville, Switzerland, pp. 41–50. Eurographics Association (2003)

    Google Scholar 

  3. Kipfer, P., Segal, M., Westermann, R.: Uberflow: a gpu-based particle engine. In: HWWS 2004: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 115–122. ACM, New York (2004)

    Chapter  Google Scholar 

  4. Govindaraju, N., Raghuvanshi, N., Henson, M., Manocha, D.: A cache-efficient sorting algorithm for database and data mining computations using graphics processors. Technical report, University of North Carolina-Chapel Hill (2005)

    Google Scholar 

  5. Greb, A., Zachmann, G.: Gpu-abisort: optimal parallel sorting on stream architectures. In: 20th International on Parallel and Distributed Processing Symposium, IPDPS 2006 (2006)

    Google Scholar 

  6. Batcher, K.: Sorting networks and their applications. In: AFIPS Spring Joint Comput. Conf. (1967)

    Google Scholar 

  7. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with cuda. In: GPU Gems 3. Addison-Wesley, Reading (2007)

    Google Scholar 

  8. Grand, S.L.: Broad-phase collision detection with cuda. In: GPU Gems, vol. 3, Addison-Wesley, Reading (2007)

    Google Scholar 

  9. He, B., Govindaraju, N.K., Luo, Q., Smith, B.: Efficient gather and scatter operations on graphics processors. In: SC 2007: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp. 1–12. ACM, New York (2007)

    Chapter  Google Scholar 

  10. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for gpu computing. In: GH 2007: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, Aire-la-Ville, Switzerland, pp. 97–106. Eurographics Association (2007)

    Google Scholar 

  11. Cederman, D., Tsigas, P.: A practical quicksort algorithm for graphics processors. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 246–258. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Sintorn, E., Assarsson, U.: Fast parallel gpu-sorting using a hybrid algorithm, Orlando, FL, USA, vol. 68, pp. 1381–1388. Academic Press, Inc., London (2008)

    Google Scholar 

  13. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for manycore gpus. In: Proceedings 23rd IEEE International Parallel and Distributed Processing Symposium (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peters, H., Schulz-Hildebrandt, O., Luttenberger, N. (2010). Fast In-Place Sorting with CUDA Based on Bitonic Sort. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14390-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14390-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14389-2

  • Online ISBN: 978-3-642-14390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics