[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Minimizing the Continuous Diameter When Augmenting a Tree with a Shortcut

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10389))

Included in the following conference series:

Abstract

We augment a tree \(T\) with a shortcut \(pq\) to minimize the largest distance between any two points along the resulting augmented tree \(T+pq\). We study this problem in a continuous and geometric setting where \(T\) is a geometric tree in the Euclidean plane, a shortcut is a line segment connecting any two points along the edges of \(T\), and we consider all points on \(T+pq\) (i.e., vertices and points along edges) when determining the largest distance along \(T+pq\). The continuous diameter is the largest distance between any two points along edges. We establish that a single shortcut is sufficient to reduce the continuous diameter of a geometric tree \(T\) if and only if the intersection of all diametral paths of \(T\) is neither a line segment nor a point. We determine an optimal shortcut for a geometric tree with \(n\) straight-line edges in \(O(n \log n)\) time.

This work was partially supported by NSERC and FQRNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cáceres, J., Garijo, D., González, A., Márquez, A., Puertas, M.L., Ribeiro, P.: Shortcut Sets for Plane Euclidean Networks. Electron. Notes Discrete Math. 54, 163–168 (2016)

    Article  MATH  Google Scholar 

  2. Chepoi, V., Vaxès, Y.: Augmenting Trees to Meet Biconnectivity and Diameter Constraints. Algorithmica 33(2), 243–262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. De Carufel, J.L., Grimm, C., Maheshwari, A., Smid, M.: Minimizing the continuous diameter when augmenting paths and cycles with shortcuts. In: SWAT 2016, pp. 27:1–27:14 (2016)

    Google Scholar 

  4. Farshi, M., Giannopoulos, P., Gudmundsson, J.: Improving the Stretch Factor of a Geometric Network by Edge Augmentation. SIAM J. Comp. 38(1), 226–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frati, F., Gaspers, S., Gudmundsson, J., Mathieson, L.: Augmenting Graphs to Minimize the Diameter. Algorithmica 72(4), 995–1010 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, Y., Hare, D.R., Nastos, J.: The Parametric Complexity of Graph Diameter Augmentation. Discrete Appl. Math. 161(10–11), 1626–1631 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Große, U., Gudmundsson, J., Knauer, C., Smid, M., Stehn, F.: Fast algorithms for diameter-optimally augmenting paths. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 678–688. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_55

    Chapter  Google Scholar 

  8. Große, U., Gudmundsson, J., Knauer, C., Smid, M., Stehn, F.: Fast Algorithms for Diameter-Optimally Augmenting Paths and Trees (2016). arXiv:1607.05547

  9. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research 12(3), 450–459 (1964)

    Article  MATH  Google Scholar 

  10. Li, C.L., McCormick, S., Simchi-Levi, D.: On the Minimum-Cardinality-Bounded-Diameter and the Bounded-Cardinality-Minimum-Diameter Edge Addition Problems. Operations Research Letters 11(5), 303–308 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo, J., Wulff-Nilsen, C.: Computing best and worst shortcuts of graphs embedded in metric spaces. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 764–775. Springer, Heidelberg (2008). doi:10.1007/978-3-540-92182-0_67

    Chapter  Google Scholar 

  12. Oh, E., Ahn, H.K.: A near-optimal algorithm for finding an optimal shortcut of a tree. In: ISAAC 2016, pp. 59:1–59:12 (2016)

    Google Scholar 

  13. Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter Increase Caused by Edge Deletion. Journal of Graph Theory 11(3), 409–427 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, B.: Euclidean Chains and their Shortcuts. Theor. Comput. Sci. 497, 55–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

De Carufel, JL., Grimm, C., Schirra, S., Smid, M. (2017). Minimizing the Continuous Diameter When Augmenting a Tree with a Shortcut. In: Ellen, F., Kolokolova, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2017. Lecture Notes in Computer Science(), vol 10389. Springer, Cham. https://doi.org/10.1007/978-3-319-62127-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62127-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62126-5

  • Online ISBN: 978-3-319-62127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics