[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Algorithms for Diameter-Optimally Augmenting Paths

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

We consider the problem of augmenting a graph with \(n\) vertices embedded in a metric space, by inserting one additional edge in order to minimize the diameter of the resulting graph. We present an exact algorithm for the cases when the input graph is a path that runs in \(O(n \log ^3 n)\) time. We also present an algorithm that computes a \((1+\varepsilon )\)-approximation in \(O(n + 1/\varepsilon ^3)\) time for paths in \({\mathbb {R}}^{d}\), where \(d\) is a constant.

The research on this topic has been initiated during the Korean Workshop on Computational Geometry 2014 (KW2014)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree graphs. Journal of Graph Theory 35, 161–172 (1999)

    Article  Google Scholar 

  2. Bilò, D., Gualà, L., Proietti, G.: Improved approximability and non-approximability results for graph diameter decreasing problems. Theoretical Computer Science 417, 12–22 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to \(k\)-nearest-neighbors and \(n\)-body potential fields. Journal of the ACM 42, 67–90 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chepoi, V., Vaxès, Y.: Augmenting trees to meet biconnectivity and diameter constraints. Algorithmica 33(2), 243–262 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chung, F.R.K., Garey, M.R.: Diameter bounds for altered graphs. Journal of Graph Theory 8(4), 511–534 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 750–759 (1999)

    Google Scholar 

  7. Erdős, P., Gyárfás, A., Ruszinkó, M.: How to decrease the diameter of triangle-free graphs. Combinatorica 18(4), 493–501 (1998)

    Article  MathSciNet  Google Scholar 

  8. Farshi, M., Giannopoulos, P., Gudmundsson, J.: Improving the stretch factor of a geometric network by edge augmentation. SIAM Journal on Computing 38(1), 226–240 (2005)

    Article  MathSciNet  Google Scholar 

  9. Frati, F., Gaspers, S., Gudmundsson, J., Mathieson, L.: Augmenting graphs to minimize the diameter. Algorithmica, 1–16 (2014)

    Google Scholar 

  10. Gao, Y., Hare, D.R., Nastos, J.: The parametric complexity of graph diameter augmentation. Discrete Applied Mathematics 161(10–11), 1626–1631 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ishii, T.: Augmenting outerplanar graphs to meet diameter requirements. Journal of Graph Theory 74, 392–416 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kapoor, S., Sarwat, M.: Bounded-diameter minimum-cost graph problems. Theory of Computing Systems 41(4), 779–794 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, C.-L., McCormick, S.T., Simchi-Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Operations Research Letters 11(5), 303–308 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Luo, J., Wulff-Nilsen, C.: Computing best and worst shortcuts of graphs embedded in metric spaces. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 764–775. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs. Journal of Graph Algorithms and Applications 16(2), 599–628 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by edge deletion. Journal of Graph Theory 11, 409–427 (1997)

    Article  Google Scholar 

  17. Wulff-Nilsen, C.: Computing the dilation of edge-augmented graphs in metric spaces. Computational Geometry - Theory and Applications 43(2), 68–72 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Stehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Große, U., Gudmundsson, J., Knauer, C., Smid, M., Stehn, F. (2015). Fast Algorithms for Diameter-Optimally Augmenting Paths. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics