[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rough Clustering Generated by Correlation Clustering

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8170))

Abstract

Correlation clustering relies on a relation of similarity (and the generated cost function). If the similarity relation is a tolerance relation, then not only one optimal partition may exist: an object can be approximated (from lower and upper side) with the help of clusters containing the given object and belonging to different partitions. In practical cases there is no way to take into consideration all optimal partitions. The authors give an algorithm which produces near optimal partitions and can be used in practical cases (to avoid the combinatorial explosion). From the practical point of view it is very important, that the system of sets appearing as lower or upper approximations of objects can be taken as a system of base sets of general (partial) approximation spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognition Letters 31, 651–666 (2010)

    Article  Google Scholar 

  2. Kumar, P., Krishna, P.R., Bapi, R.S., De, S.K.: Rough clustering of sequential data. Data & Knowledge Engineering 63, 183–199 (2007)

    Article  Google Scholar 

  3. Yang, L., Yang, L.: Study of a cluster algorithm based on rough sets theory. In: Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, ISDA 2006, vol. 1, pp. 492–496. IEEE Computer Society, Washington, DC (2006)

    Chapter  Google Scholar 

  4. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56, 89–113 (2004)

    Article  MATH  Google Scholar 

  5. Becker, H.: A survey of correlation clustering. Advanced Topics in Computational Learning Theory, 1–10 (2005)

    Google Scholar 

  6. Zimek, A.: Correlation clustering. ACM SIGKDD Explorations Newsletter 11, 53–54 (2009)

    Article  Google Scholar 

  7. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Mani, A.: Choice inclusive general rough semantics. Information Sciences 181, 1097–1115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dakuan, W., Xianzhong, Z., Xin, D., Chen, Z.: Variable rough set model and its knowledge reduction for incomplete and fuzzy decision information systems. International Journal of Information Technology 3, 140–144 (2006)

    Google Scholar 

  10. Néda, Z., Sumi, R., Ercsey-Ravasz, M., Varga, M., Molnár, B., Cseh, G.: Correlation clustering on networks. Journal of Physics A: Mathematical and Theoretical 42, 345003 (2009)

    Article  MathSciNet  Google Scholar 

  11. Aigner, M.: Enumeration via ballot numbers. Discrete Mathematics 308, 2544–2563 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aszalós, L., Mária, B.: Advanced Search Methods. Educatio Társadalmi Szolgáltató Nonprofit Kft (2012) (in Hungarian)

    Google Scholar 

  13. Lingras, P., Peters, G.: Applying rough set concepts to clustering. In: Peters, G., Lingras, P., Lzak, D., Yao, Y. (eds.) Rough Sets: Selected Methods and Applications in Management and Engineering, pp. 23–37. Springer, London (2012)

    Chapter  Google Scholar 

  14. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information sciences 112, 39–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Csajbók, Z., Mihálydeák, T.: A general set theoretic approximation framework. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part I. CCIS, vol. 297, pp. 604–612. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Mitra, S., Pedrycz, W., Barman, B.: Shadowed c-means: Integrating fuzzy and rough clustering. Pattern Recognition 43, 1282–1291 (2010)

    Article  MATH  Google Scholar 

  17. Parmar, D., Wu, T., Blackhurst, J.: MMR: an algorithm for clustering categorical data using rough set theory. Data & Knowledge Engineering 63, 879–893 (2007)

    Article  Google Scholar 

  18. Peters, G., Weber, R., Nowatzke, R.: Dynamic rough clustering and its applications. Applied Soft Computing 12, 3193–3207 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aszalós, L., Mihálydeák, T. (2013). Rough Clustering Generated by Correlation Clustering. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2013. Lecture Notes in Computer Science(), vol 8170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41218-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41218-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41217-2

  • Online ISBN: 978-3-642-41218-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics