Abstract
Correlation clustering relies on a relation of similarity (and the generated cost function). If the similarity relation is a tolerance relation, then not only one optimal partition may exist: an object can be approximated (from lower and upper side) with the help of clusters containing the given object and belonging to different partitions. In practical cases there is no way to take into consideration all optimal partitions. The authors give an algorithm which produces near optimal partitions and can be used in practical cases (to avoid the combinatorial explosion). From the practical point of view it is very important, that the system of sets appearing as lower or upper approximations of objects can be taken as a system of base sets of general (partial) approximation spaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognition Letters 31, 651–666 (2010)
Kumar, P., Krishna, P.R., Bapi, R.S., De, S.K.: Rough clustering of sequential data. Data & Knowledge Engineering 63, 183–199 (2007)
Yang, L., Yang, L.: Study of a cluster algorithm based on rough sets theory. In: Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, ISDA 2006, vol. 1, pp. 492–496. IEEE Computer Society, Washington, DC (2006)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56, 89–113 (2004)
Becker, H.: A survey of correlation clustering. Advanced Topics in Computational Learning Theory, 1–10 (2005)
Zimek, A.: Correlation clustering. ACM SIGKDD Explorations Newsletter 11, 53–54 (2009)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Mani, A.: Choice inclusive general rough semantics. Information Sciences 181, 1097–1115 (2011)
Dakuan, W., Xianzhong, Z., Xin, D., Chen, Z.: Variable rough set model and its knowledge reduction for incomplete and fuzzy decision information systems. International Journal of Information Technology 3, 140–144 (2006)
Néda, Z., Sumi, R., Ercsey-Ravasz, M., Varga, M., Molnár, B., Cseh, G.: Correlation clustering on networks. Journal of Physics A: Mathematical and Theoretical 42, 345003 (2009)
Aigner, M.: Enumeration via ballot numbers. Discrete Mathematics 308, 2544–2563 (2008)
Aszalós, L., Mária, B.: Advanced Search Methods. Educatio Társadalmi Szolgáltató Nonprofit Kft (2012) (in Hungarian)
Lingras, P., Peters, G.: Applying rough set concepts to clustering. In: Peters, G., Lingras, P., Lzak, D., Yao, Y. (eds.) Rough Sets: Selected Methods and Applications in Management and Engineering, pp. 23–37. Springer, London (2012)
Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information sciences 112, 39–49 (1998)
Csajbók, Z., Mihálydeák, T.: A general set theoretic approximation framework. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part I. CCIS, vol. 297, pp. 604–612. Springer, Heidelberg (2012)
Mitra, S., Pedrycz, W., Barman, B.: Shadowed c-means: Integrating fuzzy and rough clustering. Pattern Recognition 43, 1282–1291 (2010)
Parmar, D., Wu, T., Blackhurst, J.: MMR: an algorithm for clustering categorical data using rough set theory. Data & Knowledge Engineering 63, 879–893 (2007)
Peters, G., Weber, R., Nowatzke, R.: Dynamic rough clustering and its applications. Applied Soft Computing 12, 3193–3207 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aszalós, L., Mihálydeák, T. (2013). Rough Clustering Generated by Correlation Clustering. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2013. Lecture Notes in Computer Science(), vol 8170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41218-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-41218-9_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41217-2
Online ISBN: 978-3-642-41218-9
eBook Packages: Computer ScienceComputer Science (R0)