[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

VISIONE at Video Browser Showdown 2023

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Abstract

In this paper, we present the fourth release of VISIONE, a tool for fast and effective video search on a large-scale dataset. It includes several search functionalities like text search, object and color-based search, semantic and visual similarity search, and temporal search. VISIONE uses ad-hoc textual encoding for indexing and searching video content, and it exploits a full-text search engine as search backend. In this new version of the system, we introduced some changes both to the current search techniques and to the user interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1.

  2. 2.

    https://github.com/facebookresearch/faiss.

  3. 3.

    https://lucene.apache.org/.

  4. 4.

    Please note that some of these changes were already integrated in VISIONE some weeks before the last VBS competition.

  5. 5.

    https://doi.org/10.5281/zenodo.7194300.

  6. 6.

    https://wordnet.princeton.edu/.

References

  1. Amato, G., et al.: VISIONE at VBS2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 591–596. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_51

    Chapter  Google Scholar 

  2. Amato, G., et al.: The VISIONE video search system: exploiting off-the-shelf text search engines for large-scale video retrieval. J. Imaging 7(5), 76 (2021)

    Article  Google Scholar 

  3. Amato, G., et al.: VISIONE at video browser showdown 2022. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 543–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_52

    Chapter  Google Scholar 

  4. Amato, G., et al.: VISIONE at video browser showdown 2021. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 473–478. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_47

    Chapter  Google Scholar 

  5. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vadicamo, L.: Large-scale instance-level image retrieval. Inf. Process. Manage. 57, 102100 (2019)

    Google Scholar 

  6. Benavente, R., Vanrell, M., Baldrich, R.: Parametric fuzzy sets for automatic color naming. JOSA A 25(10), 2582–2593 (2008)

    Article  Google Scholar 

  7. Bolettieri, P., et al.: An image retrieval system for video. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 332–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_29

    Chapter  Google Scholar 

  8. Carrara, F., Vadicamo, L., Gennaro, C., Amato, G.: Approximate nearest neighbor search on standard search engines. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds.) SISAP 2022. LNCS, vol. 13590, pp. 214–221. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17849-8_17

    Chapter  Google Scholar 

  9. Fang, H., Xiong, P., Xu, L., Chen, Y.: Clip2video: mastering video-text retrieval via image clip. arXiv preprint arXiv:2106.11097 (2021)

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  11. Heller, S., et al.: Interactive video retrieval evaluation at a distance: comparing sixteen interactive video search systems in a remote setting at the 10th video browser showdown. Int. J. Multimed. Inf. Retrieval 11(1), 1–18 (2022)

    Article  Google Scholar 

  12. Hezel, N., Schall, K., Jung, K., Barthel, K.U.: Efficient search and browsing of large-scale video collections with vibro. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 487–492. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_43

    Chapter  Google Scholar 

  13. Lokoč, J., Mejzlík, F., Souček, T., Dokoupil, P., Peška, L.: Video search with context-aware ranker and relevance feedback. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 505–510. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_46

    Chapter  Google Scholar 

  14. Lokoč, J.: Is the reign of interactive search eternal? findings from the video browser showdown 2020. ACM Trans. Multimed. Comput. Commun. Appl. 17(3), 1–26 (2021)

    Article  Google Scholar 

  15. Messina, N., Falchi, F., Esuli, A., Amato, G.: Transformer reasoning network for image-text matching and retrieval. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5222–5229. IEEE (2021)

    Google Scholar 

  16. Messina, N., et al.: Aladin: distilling fine-grained alignment scores for efficient image-text matching and retrieval. arXiv preprint arXiv:2207.14757 (2022)

  17. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech recognition via large-scale weak supervision. Technical report, OpenAI (2022)

    Google Scholar 

  18. Revaud, J., Almazan, J., Rezende, R., de Souza, C.: Learning with average precision: Training image retrieval with a listwise loss. In: International Conference on Computer Vision, pp. 5106–5115. IEEE (2019)

    Google Scholar 

  19. Rossetto, L., et al.: Interactive video retrieval in the age of deep learning - detailed evaluation of VBS 2019. IEEE Trans. Multimed., 1 (2020)

    Google Scholar 

  20. Rossetto, L., Schuldt, H., Awad, G., Butt, A.A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29

    Chapter  Google Scholar 

  21. Truong, Q.T., et al.: Marine video kit: a new marine video dataset for content-based analysis and retrieval. In: MultiMedia Modeling - 29th International Conference, MMM 2023, Bergen, Norway, January 9–12, 2023. Springer (2023)

    Google Scholar 

  22. Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2021

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by AI4Media - A European Excellence Centre for Media, Society and Democracy (EC, H2020 n. 951911) and INAROS, CNR4C program (Tuscany POR FSE CUP B53D21008060008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Vadicamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amato, G. et al. (2023). VISIONE at Video Browser Showdown 2023. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics