Abstract
In this paper, we present the fourth release of VISIONE, a tool for fast and effective video search on a large-scale dataset. It includes several search functionalities like text search, object and color-based search, semantic and visual similarity search, and temporal search. VISIONE uses ad-hoc textual encoding for indexing and searching video content, and it exploits a full-text search engine as search backend. In this new version of the system, we introduced some changes both to the current search techniques and to the user interface.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Please note that some of these changes were already integrated in VISIONE some weeks before the last VBS competition.
- 5.
- 6.
References
Amato, G., et al.: VISIONE at VBS2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11296, pp. 591–596. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_51
Amato, G., et al.: The VISIONE video search system: exploiting off-the-shelf text search engines for large-scale video retrieval. J. Imaging 7(5), 76 (2021)
Amato, G., et al.: VISIONE at video browser showdown 2022. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 543–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_52
Amato, G., et al.: VISIONE at video browser showdown 2021. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 473–478. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_47
Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vadicamo, L.: Large-scale instance-level image retrieval. Inf. Process. Manage. 57, 102100 (2019)
Benavente, R., Vanrell, M., Baldrich, R.: Parametric fuzzy sets for automatic color naming. JOSA A 25(10), 2582–2593 (2008)
Bolettieri, P., et al.: An image retrieval system for video. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 332–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_29
Carrara, F., Vadicamo, L., Gennaro, C., Amato, G.: Approximate nearest neighbor search on standard search engines. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds.) SISAP 2022. LNCS, vol. 13590, pp. 214–221. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17849-8_17
Fang, H., Xiong, P., Xu, L., Chen, Y.: Clip2video: mastering video-text retrieval via image clip. arXiv preprint arXiv:2106.11097 (2021)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Heller, S., et al.: Interactive video retrieval evaluation at a distance: comparing sixteen interactive video search systems in a remote setting at the 10th video browser showdown. Int. J. Multimed. Inf. Retrieval 11(1), 1–18 (2022)
Hezel, N., Schall, K., Jung, K., Barthel, K.U.: Efficient search and browsing of large-scale video collections with vibro. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 487–492. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_43
Lokoč, J., Mejzlík, F., Souček, T., Dokoupil, P., Peška, L.: Video search with context-aware ranker and relevance feedback. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 505–510. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_46
Lokoč, J.: Is the reign of interactive search eternal? findings from the video browser showdown 2020. ACM Trans. Multimed. Comput. Commun. Appl. 17(3), 1–26 (2021)
Messina, N., Falchi, F., Esuli, A., Amato, G.: Transformer reasoning network for image-text matching and retrieval. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5222–5229. IEEE (2021)
Messina, N., et al.: Aladin: distilling fine-grained alignment scores for efficient image-text matching and retrieval. arXiv preprint arXiv:2207.14757 (2022)
Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech recognition via large-scale weak supervision. Technical report, OpenAI (2022)
Revaud, J., Almazan, J., Rezende, R., de Souza, C.: Learning with average precision: Training image retrieval with a listwise loss. In: International Conference on Computer Vision, pp. 5106–5115. IEEE (2019)
Rossetto, L., et al.: Interactive video retrieval in the age of deep learning - detailed evaluation of VBS 2019. IEEE Trans. Multimed., 1 (2020)
Rossetto, L., Schuldt, H., Awad, G., Butt, A.A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29
Truong, Q.T., et al.: Marine video kit: a new marine video dataset for content-based analysis and retrieval. In: MultiMedia Modeling - 29th International Conference, MMM 2023, Bergen, Norway, January 9–12, 2023. Springer (2023)
Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)
Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2021
Acknowledgements
This work was partially funded by AI4Media - A European Excellence Centre for Media, Society and Democracy (EC, H2020 n. 951911) and INAROS, CNR4C program (Tuscany POR FSE CUP B53D21008060008).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Amato, G. et al. (2023). VISIONE at Video Browser Showdown 2023. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_48
Download citation
DOI: https://doi.org/10.1007/978-3-031-27077-2_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27076-5
Online ISBN: 978-3-031-27077-2
eBook Packages: Computer ScienceComputer Science (R0)