[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Image Retrieval System for Video

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2019)

Abstract

Since the 1970’s the Content-Based Image Indexing and Retrieval (CBIR) has been an active area. Nowadays, the rapid increase of video data has paved the way to the advancement of the technologies in many different communities for the creation of Content-Based Video Indexing and Retrieval (CBVIR). However, greater attention needs to be devoted to the development of effective tools for video search and browse. In this paper, we present Visione, a system for large-scale video retrieval. The system integrates several content-based analysis and retrieval modules, including a keywords search, a spatial object-based search, and a visual similarity search. From the tests carried out by users when they needed to find as many correct examples as possible, the similarity search proved to be the most promising option. Our implementation is based on state-of-the-art deep learning approaches for content analysis and leverages highly efficient indexing techniques to ensure scalability. Specifically, we encode all the visual and textual descriptors extracted from the videos into (surrogate) textual representations that are then efficiently indexed and searched using an off-the-shelf text search engine using similarity functions.

Work partially supported by the AI4EU project (EC-H2020 - Contract n. 825619).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www-nlpir.nist.gov/projects/tv2019/data.html.

  2. 2.

    https://lucene.apache.org/.

  3. 3.

    https://pjreddie.com/darknet/yolo/.

  4. 4.

    http://www.videobrowsershowdown.org/example-browsers/infos-and-results-2019/.

References

  1. Amato, G., et al.: VISIONE at VBS2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019, Part II. LNCS, vol. 11296, pp. 591–596. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05716-9_51

    Chapter  Google Scholar 

  2. Amato, G., Falchi, F., Gennaro, C., Rabitti, F.: Searching and annotating 100M images with YFCC100M-HNfc6 and MI-File. In: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing, CBMI 2017, pp. 26:1–26:4. ACM (2017)

    Google Scholar 

  3. Amato, G., Falchi, F., Gennaro, C., Vadicamo, L.: Deep permutations: deep convolutional neural networks and permutation-based indexing. In: Amsaleg, L., Houle, M.E., Schubert, E. (eds.) SISAP 2016. LNCS, vol. 9939, pp. 93–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46759-7_7

    Chapter  Google Scholar 

  4. Awad, G., Snoek, C.G.M., Smeaton, A.F., Quénot, G.: Trecvid semantic indexing of video: a 6-year retrospective. ITE Trans. Media Technol. Appl. 4(3), 187–208 (2016)

    Article  Google Scholar 

  5. Fellbaum, C., Miller, G.: WordNet: An Electronic Lexical Database. Language, Speech, and Communication. MIT Press, Cambridge (1998)

    Book  Google Scholar 

  6. Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based image retrieval based on the lucene search engine library. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 55–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15464-5_8

    Chapter  Google Scholar 

  7. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. Int. J. Comput. Vis. 124(2), 237–254 (2017)

    Article  MathSciNet  Google Scholar 

  8. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  9. Jiang, Y.G., Wu, Z., Wang, J., Xue, X., Chang, S.F.: Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 352–364 (2018)

    Article  Google Scholar 

  10. Lokoč, J., Kovalčík, G., Souček, T.: Revisiting SIRET video retrieval tool. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 419–424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_44

    Chapter  Google Scholar 

  11. Lokoč, J., Bailer, W., Schöffmann, K., Münzer, B., Awad, G.: On influential trends in interactive video retrieval: Video browser showdown 2015–2017. IEEE Trans. Multimedia 20(12), 3361–3376 (2018)

    Article  Google Scholar 

  12. Lokoč, J., et al.: Interactive search or sequential browsing? A detailed analysis of the video browser showdown 2018. ACM Trans. Multimedia Comput. Commun. Appl. 15(1), 29:1–29:18 (2019)

    Article  Google Scholar 

  13. Niraimathi, D.S.: Color based image segmentation using classification of k-NN with contour analysis method. Int. Res. J. Eng. Technol. 3, 1169–1177 (2016)

    Google Scholar 

  14. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  15. Rossetto, L., Schuldt, H., Awad, G., Butt, A.A.: V3C – a research video collection. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.-H., Vrochidis, S. (eds.) MMM 2019. LNCS, vol. 11295, pp. 349–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05710-7_29

    Chapter  Google Scholar 

  16. Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)

    Article  Google Scholar 

  17. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. arXiv preprint arXiv:1511.05879 (2015)

  18. Truong, T.-D., et al.: Video search based on semantic extraction and locally regional object proposal. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 451–456. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_49

    Chapter  Google Scholar 

  19. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Debole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolettieri, P. et al. (2019). An Image Retrieval System for Video. In: Amato, G., Gennaro, C., Oria, V., Radovanović , M. (eds) Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science(), vol 11807. Springer, Cham. https://doi.org/10.1007/978-3-030-32047-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32047-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32046-1

  • Online ISBN: 978-3-030-32047-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics