[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Algorithm for Mining Fixed-Length High Utility Itemsets

  • Conference paper
  • First Online:
Database Systems for Advanced Applications. DASFAA 2022 International Workshops (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13248))

Included in the following conference series:

  • 1210 Accesses

Abstract

High utility pattern/itemset mining is a hotspot of data mining. Different from the traditional frequent pattern, high utility pattern takes into consideration not only the number of items in the transaction, but also the weight of these items, such as profit and price. Hence the computational complexity of this mining algorithm is higher than the traditional frequent pattern mining. Thus, one essential topic of this field is to reduce the search space and improve the mining efficiency. Constraint on pattern length can effectively reduce algorithm search space while fulfill a certain kind of actual requirement. Addressing fixed length high utility pattern mining, we propose a novel algorithm, called HUIK (High Utility Itemsets with K-length Miner), that first compresses transaction data into a tree, then recursively searches high utility patterns with designated length using a pattern growth approach. An effective pruning strategy is also proposed to reduce the number of candidate items on the compressed tree, to further reduce the search space and improve algorithm efficiency. The performance of the algorithm HUIK is verified on six classical datasets. Experimental results verify that the proposed algorithm has a significant improvement in time efficiency, especially for long datasets and dense datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin, C., Lan, G., Hong, T.: Mining high utility itemsets for transaction deletion in a dynamic database. Intell. Data Anal. 19(1), 43–55 (2015)

    Article  Google Scholar 

  2. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08326-1_9

    Chapter  Google Scholar 

  3. Zida, S., et al.: EFIM: a fast and memory efficient algorithm for high-utility itemset mining. Knowl. Inf. Syst. 51(2), 595–625 (2017)

    Article  Google Scholar 

  4. Han, X., Liu, X., Li, J., Gao, H.: Efficient top-k high utility itemset mining on massive data. Inf. Sci. 557, 382–406 (2021)

    Article  MathSciNet  Google Scholar 

  5. Verma, A., Dawar, S., Kumar, R., Navathe, S., Goyal, V.: High-utility and diverse itemset mining. Appl. Intell. 51(7), 4649–4663 (2021). https://doi.org/10.1007/s10489-020-02063-x

    Article  Google Scholar 

  6. Agrawal, R., Imielinski, T., Swami, A.. Mining association rules between sets of items in large databases. In: ACM SIGMOD International Conference on Management of Data, Washington, DC, United States. ACM (1993)

    Google Scholar 

  7. Li, H., et al.: Fast and memory efficient mining of high utility itemsets in data streams. In: 2008 Eighth IEEE International Conference on Data Mining. IEEE (2008)

    Google Scholar 

  8. Ahmed, C.F., et al.: Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–1721 (2009)

    Article  Google Scholar 

  9. Shie, B.-E., Hsiao, H.-F., Tseng, V.S.: Efficient algorithms for discovering high utility user behavior patterns in mobile commerce environments. Knowl. Inf. Syst. 37(2), 363–387 (2012). https://doi.org/10.1007/s10115-012-0483-z

    Article  Google Scholar 

  10. Li, Y., Yeh, J., Chang, C.: Isolated items discarding strategy for discovering high utility itemsets. Data Knowl. Eng. 64(1), 198–217 (2008)

    Article  Google Scholar 

  11. Zihayat, M., Davoudi, H., An, A.: Mining significant high utility gene regulation sequential patterns. BMC Syst. Biol. 11(6), 109 (2017)

    Article  Google Scholar 

  12. Yao, H., Hamilton, H.J., Butz, G.J.: A foundational approach to mining itemset utilities from databases. In: 4th SIAM International Conference on Data Mining (ICDM 2004), Lake Buena Vista, FL, United States (2004)

    Google Scholar 

  13. Liu, Y., Liao, W.K., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 689–695. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_79

    Chapter  Google Scholar 

  14. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: 21st ACM International Conference on Information and Knowledge Management (CIKM 2012), Maui, HI, United States. Association for Computing Machinery (2012)

    Google Scholar 

  15. Lan, G., et al.: Applying the maximum utility measure in high utility sequential pattern mining. Expert Syst. Appl. 41(11), 5071–5081 (2014)

    Article  Google Scholar 

  16. Yun, U., Ryang, H., Ryu, K.H.: High utility itemset mining with techniques for reducing overestimated utilities and pruning candidates. Expert Syst. Appl. 41(8), 3861–3878 (2014)

    Article  Google Scholar 

  17. Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert Syst. Appl. 2015(42), 2371–2381 (2015)

    Article  Google Scholar 

  18. Fournier-Viger, P., Lin, J.-W., Duong, Q.-H., Dam, T.-L.: FHM$+$: faster high-utility itemset mining using length upper-bound reduction. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.) IEA/AIE 2016. LNCS (LNAI), vol. 9799, pp. 115–127. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42007-3_11

    Chapter  Google Scholar 

  19. Tseng, V.S., et al.: Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)

    Article  Google Scholar 

  20. Duong, Q.-H., Fournier-Viger, P., Ramampiaro, H., Nørvåg, K., Dam, T.-L.: Efficient high utility itemset mining using buffered utility-lists. Appl. Intell. 48(7), 1859–1877 (2017). https://doi.org/10.1007/s10489-017-1057-2

    Article  Google Scholar 

  21. Liu, J., Wang, K., Fung, B.C.: Direct discovery of high utility itemsets without candidate generation. In: 2012 IEEE 12th International Conference on Data Mining. IEEE (2012)

    Google Scholar 

  22. Kim, J., et al.: One scan based high average-utility pattern mining in static and dynamic databases. Futur. Gener. Comput. Syst. 111, 143–158 (2020)

    Article  Google Scholar 

  23. Truong, T., et al.: Efficient high average-utility itemset mining using novel vertical weak upper-bounds. Knowl.-Based Syst. 183, 104847 (2019)

    Article  Google Scholar 

  24. Krishnamoorthy, S.: Mining top-k high utility itemsets with effective threshold raising strategies. Expert Syst. Appl. 117, 148–165 (2019)

    Article  Google Scholar 

  25. Nam, H., et al.: Efficient approach of recent high utility stream pattern mining with indexed list structure and pruning strategy considering arrival times of transactions. Inf. Sci. 529, 1–27 (2020)

    Article  MathSciNet  Google Scholar 

  26. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_8

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is partially supported by the Zhejiang Philosophy and Social Science Project (19GXSZ49YB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L. (2022). An Algorithm for Mining Fixed-Length High Utility Itemsets. In: Rage, U.K., Goyal, V., Reddy, P.K. (eds) Database Systems for Advanced Applications. DASFAA 2022 International Workshops. DASFAA 2022. Lecture Notes in Computer Science, vol 13248. Springer, Cham. https://doi.org/10.1007/978-3-031-11217-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11217-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11216-4

  • Online ISBN: 978-3-031-11217-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics