Abstract
High-utility itemset (HUI) mining is a popular data mining task, consisting of enumerating all groups of items that yield a high profit in a customer transaction database. However, an important issue with traditional HUI mining algorithms is that they tend to find itemsets having many items. But those itemsets are often rare, and thus may be less interesting than smaller itemsets for users. In this paper, we address this issue by presenting a novel algorithm named FHM\(+\) for mining HUIs, while considering length constraints. To discover HUIs efficiently with length constraints, FHM\(+\) introduces the concept of Length Upper-Bound Reduction (LUR), and two novel upper-bounds on the utility of itemsets. An extensive experimental evaluation shows that length constraints are effective at reducing the number of patterns, and the novel upper-bounds can greatly decrease the execution time, and memory usage for HUI mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the International Conference on Very Large Databases, pp. 487–499 (1994)
Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp. 83–92. Springer, Heidelberg (2014)
Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR) 15, 3389–3393 (2014)
Pei, J., Han, J.: Constrained frequent pattern mining: a pattern-growth view. ACM SIGKDD Explor. Newsl. 4(1), 31–39 (2012)
Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing approach for mining high utility itemsets. Knowl. Inf. Syst. 38(1), 85–107 (2014)
Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert Syst. Appl. 42(5), 2371–2381 (2015)
Lin, J.C.-W., Gan, W., Hong, T.-P., Pan, J.-S.: Incrementally updating high-utility itemsets with transaction insertion. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS, vol. 8933, pp. 44–56. Springer, Heidelberg (2014)
Song, W., Liu, Y., Li, J.: BAHUI: fast and memory efficient mining of high utility itemsets based on bitmap. Int. J. Data Warehous. Min. 10(1), 1–15 (2014)
Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 55–64 (2012)
Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)
Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)
Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.W., Tseng, V.S.: Efficient mining of high utility sequential rules. In: Proceedings of the 11th International Conference on Machine Learning and Data Mining, pp. 1–15 (2015)
Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S.: EFIM: a highly efficient algorithm for high-utility itemset mining. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS, vol. 9413, pp. 530–546. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27060-9_44
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Fournier-Viger, P., Lin, J.CW., Duong, QH., Dam, TL. (2016). FHM\(+\): Faster High-Utility Itemset Mining Using Length Upper-Bound Reduction. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds) Trends in Applied Knowledge-Based Systems and Data Science. IEA/AIE 2016. Lecture Notes in Computer Science(), vol 9799. Springer, Cham. https://doi.org/10.1007/978-3-319-42007-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-42007-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42006-6
Online ISBN: 978-3-319-42007-3
eBook Packages: Computer ScienceComputer Science (R0)