[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Introduction to Geometric Algebra

  • Conference paper
  • First Online:
Advanced Computational Applications of Geometric Algebra (ICACGA 2022)

Abstract

Geometric algebra was initiated by W.K. Clifford over 140 years ago. It unifies all branches of physics, and has found rich applications in robotics, signal processing, ray tracing, virtual reality, computer vision, vector field processing, tracking, geographic information systems and neural computing. This introduction explains the basics of geometric algebra, with concrete examples of the plane, of 3D space, of spacetime, the popular conformal model, and projective geometric algebra. Geometric algebras are ideal to represent geometric transformations in the general framework of Clifford groups (also called versor or Lipschitz groups). Geometric (algebra based) calculus allows, e.g., to optimize learning algorithms of Clifford neurons, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The inner product defines the measurement of length and angle.

  2. 2.

    This setting amounts to an algebra generating relationship.

  3. 3.

    No product sign will be introduced, simple juxtaposition implies the geometric product just like \(2x = 2 \times x\).

  4. 4.

    A \(\mathbb {K}\)-isometry between two inner-product spaces is a \(\mathbb {K}\)-linear mapping preserving the inner products.

  5. 5.

    A \(\mathbb {K}\)-algebra is a \(\mathbb {K}\)-vector space equipped with an associative and multilinear product. An inner-product \(\mathbb {K}\)-algebra is a \(\mathbb {K}\)-algebra equipped with an inner product structure when taken as \(\mathbb {K}\)-vector space.

  6. 6.

    Important fields are real \(\mathbb {R}\) and complex numbers \(\mathbb {C}\), etc.

  7. 7.

    That is a \(\mathbb {K}\)-linear homomorphism preserving the inner products, i.e., a \(\mathbb {K}\)-linear mapping preserving both the products of the algebras when taken as rings, and the inner products of the algebras when taken as inner-product vector spaces.

  8. 8.

    The setting \(e_{\emptyset }=1\) is frequently used in geometric algebra, but not necessary.

  9. 9.

    See also Remark 1.

  10. 10.

    The Clifford algebra \(Cl(\mathbb {R}^2)\) is isomorphic to the Wessel algebra, see [17, 67, 69].

  11. 11.

    Note that reflections at hyperplanes are nothing but the Householder transformations [44] of matrix analysis.

  12. 12.

    A hyperplane of a nD space is a \((n-1)\)D subspace, thus a hyperplane of \(\mathbb {R}^2\), \(n=2\), is a 1D (\(2-1=1\)) subspace, i.e. a line. Every hyperplane is characterized by a vector normal to the hyperplane.

  13. 13.

    Reversion is an anti-automorphism. Often a dagger \(A^{\dagger }\) is used instead of the tilde, as well as the term transpose.

  14. 14.

    Note, that in general for Clifford algebras Cl(n, 0) of Euclidean spaces \(\mathbb {R}^{n,0}\) we have the identity \(\textrm{Spin}(n) = \textrm{Spin}_+(n)\), where \(\textrm{Spin}(n) = \textrm{Spin}(n,0)\). The reason is that \(A\widetilde{A} < 0\) is only possible for non-Euclidean spaces \(\mathbb {R}^{p,q}\), with \(q>0\).

  15. 15.

    Two-fold covering means, that there are always two elements \(\pm A\) in \(\textrm{Pin}(2,0)\), \(\textrm{Spin}(2,0)\), and \(\textrm{Spin}_+(2,0)\), representing one element in \(\textrm{O}(2,0)\), \(\textrm{SO}(2,0)\) and \(\textrm{SO}_+(2,0)\), respectively.

  16. 16.

    Also called grade projection.

  17. 17.

    Strictly speaking, Cl(3, 0) is the algebra of directions in three dimensions, respectively the algebra of hyperplanes (and subspaces) passing through the origin. It is closely related to the linear algebra of \(\mathbb {R}^3\).

  18. 18.

    The minus signs are only chosen, to make the product of two bivectors identical to the third, and not minus the third.

  19. 19.

    Obviously, we can alternatively select any unit bivector \({{\textbf {u}}}\) and obtain the tessarines \(\{1, {{\textbf {u}}}i_3, {{\textbf {u}}}, i_3 \}\). The two specifications are related by \({{\textbf {u}}}= u i_3\) or \(u = -{{\textbf {u}}}i_3 = {{\textbf {u}}}^*\).

  20. 20.

    In the context of blade subspaces, whenever a blade B contains another blade A as factor, then the geometric product is reduced to left or right contraction: \(A B = A\rfloor B, B A = B \lfloor A\).

  21. 21.

    Equation (64) apply in all Clifford algebras, but (65) need some modification if the pseudoscalar is not central.

  22. 22.

    To include \(e_{23}\) one can simply compute \(A-P_B(A) = e_3+e_{23}\).

  23. 23.

    The symbol \(\vee \) stems from Grassmann-Cayley algebra.

  24. 24.

    For definition and computation of the meet see also Sect. 4 of [5].

  25. 25.

    Theorem 4 of [61] shows in full generality how to compute the characteristic polynomial of any \(M \in Cl(p,q)\), including the determinant and adjugate.

  26. 26.

    Note that some authors prefer opposite signature Cl(3, 1), e.g., [37]. Furthermore, various names are in use, like Clifford’s geometric algebra of spacetime, geometric algebra of spacetime, Clifford algebra of spacetime, or geometric algebra of Minkowski spacetime, etc.

  27. 27.

    Unique up to a nonzero scalar factor.

  28. 28.

    Note the alternative notations: e instead of \({{{\boldsymbol{e}}}}_0\) in [49], or \(\bar{n}\) for \(e_0\) and n for \({{{\boldsymbol{e}}}}_{\infty }\) with \(n\cdot \bar{n} = 2\) in [46], or \( o \) for \({{{\boldsymbol{e}}}}_0\) and \(\infty \) for \({{{\boldsymbol{e}}}}_{\infty }\) with \( o \cdot \infty =-2\) in [12], etc.

  29. 29.

    We use for null vectors the notation \(\textbf{e}_{o}\), and \(\textbf{e}_{\infty }\) with added indexes 1,2,3, because this intuitive notation for CGA null vectors became widespread with [10], replacing the earlier notation \(\overline{n}\) and n. The notation \(\overline{n}\) and n with added indexes 1,2,3 was used in [57], but [6] consistently combined instead \(\textbf{e}_{o}\), and \(\textbf{e}_{\infty }\) with added indexes 1,2,3, etc. [36] adopts the notation for basis vectors following [6].

  30. 30.

    The parameters \(\lambda _i\), \(i=1,2,3\), parameterize a continuous set of horospheres [15].

  31. 31.

    www.gaalop.de/gaalopweb/.

  32. 32.

    In the case of Cl(pq) with \(q>0\) one can use the principal reverse \(g(\boldsymbol{x})^T\) of page xx instead of the reverse \(\widetilde{g(\boldsymbol{x})}\).

References

  1. Abłamowicz, R.: Structure of spin groups associated with degenerate Clifford algebras. J. Math. Phys. 27(1), 1–6 (1986)

    Article  MathSciNet  Google Scholar 

  2. Abłamowicz, A., Fauser, B.: On the transposition anti-involution in real Clifford algebras I: the transposition map. Linear and Multilinear Algebra 59(12), 1331–1358 (2011). https://doi.org/10.1080/03081087.2010.517201

    Article  MathSciNet  Google Scholar 

  3. Ahlfors, L.V.: Moebius transformations in \({\mathbb{R} }^n\) expressed through \(2\times 2\) matrices of Clifford numbers. Complex Variables 5, 215–224 (1986)

    Google Scholar 

  4. Altmann, S.: Rotations, Quaternions, and Double Groups. Dover, New York (1986)

    Google Scholar 

  5. Barnabei, M., Brini, A., Rota, G.: On the exterior calculus of invariant theory. J. Algebra 96, 120–160 (1985). https://doi.org/10.1016/0021-8693(85)90043-2

    Article  MathSciNet  Google Scholar 

  6. Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric algebra of \({\mathbb{R} }^{9,6}\). Adv. Appl. Clifford Algebras 28(35), 1–16 (2018). https://doi.org/10.1007/s00006-018-0851-1

    Article  Google Scholar 

  7. Breuils, S., Tachibana, K., Hitzer, E.: Introduction to Clifford’s Geometric Algebra, pp. 1–10 (2021). Preprint: https://vixra.org/abs/2108.0145. Last accessed 27 Aug 2021

  8. Breuils, S., Tachibana, K., Hitzer, E.: New applications of Clifford’s geometric algebra. Adv. Appl. Clifford Algebras 32(17), 1–39 (2022). https://doi.org/10.1007/s00006-021-01196-7

    Article  MathSciNet  Google Scholar 

  9. Doran, D., Lasenby, A.: Geometric Algebra for Physicists. CUP, Cambridge (UK) (2003)

    Book  Google Scholar 

  10. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science—An Object-Oriented Approach to Geometry. Morgan Kaufmann, San Francisco (2007)

    Google Scholar 

  11. Dorst, L.: The inner products of geometric algebra, In: Dorst, L., Doran, C., Lasenby, J.(eds.), Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Boston, MA. (2002). https://doi.org/10.1007/978-1-4612-0089-5_2

  12. Dorst, L.: Conformal villarceau rotors. Adv. Appl. Clifford Algebras 29(44), 1–20 (2019). https://doi.org/10.1007/s00006-019-0960-5

    Article  MathSciNet  Google Scholar 

  13. Dorst, L., De Keninck, S.: A Guided Tour to the Plane-Based Geometric Algebra PGA (Version 2.0). 14 Mar. 2022. https://bivector.net/PGA4CS.pdf. Last accessed 23 Dec 2022

  14. Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27, 2175–2199 (2017). https://doi.org/10.1007/s00006-017-0784-0

    Article  MathSciNet  Google Scholar 

  15. El Mir, G., Saint-Jean, C., Berthier, M.: Conformal geometry for viewpoint change representation. Adv. Appl. Clifford Algebras 24(2), 443–463 (2014). https://doi.org/10.1007/s00006-013-0431-3

    Article  MathSciNet  Google Scholar 

  16. Falcao, M.I., Malonek, H.R.: Generalized Exponentials through Appell sets in \({\mathbb{R} }^{n+1}\) and Bessel functions. AIP Conf. Proc. 936, 738–741 (2007)

    Article  Google Scholar 

  17. Farouki, R.T.: Minkowski geometric algebra of complex sets—theory, algorithms, applications. Presentation, https://faculty.engineering.ucdavis.edu/farouki/wp-content/uploads/sites/51/2021/07/Minkowski-geometric-algebra-of-complex-sets.pdf. Last accessed 06 July 2023

  18. Fletcher, P.: Discrete wavelets with quaternion and Clifford coefficients. Adv. Appl. Clifford Algebras 28(59), 1–30 (2018). https://doi.org/10.1007/s00006-018-0876-5

    Article  MathSciNet  Google Scholar 

  19. Hestenes, D.: Spacetime Algebra. Birkhäuser, Cham (2015)

    Book  Google Scholar 

  20. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Kluwer, Dordrecht (1992)

    Google Scholar 

  21. Hestenes, D.: New Foundations for Classical Mechanics. Kluwer, Dordrecht (1999)

    Google Scholar 

  22. Hildenbrand, D., Pitt, J., Koch, A.: Gaalop—high performance parallel computing based on conformal geometric algebra. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing in Engineering and Computer Science, pp. 477–494. Springer, Berlin (2010)

    Chapter  Google Scholar 

  23. Hildenbrand D., Charrier, P.: Conformal geometric objects with focus on oriented points. In: Gürlebeck, K. (ed.) Proceedings of 9th International Conference on Clifford Algebras and their Applications in Mathematical Physics. Weimar, Germany, 15–20 July 2011, p. 10. Preprint: http://www.gaalop.de/wp-content/uploads/LongConformalEntities_ICCA91.pdf. Last accessed 06 July 2023

  24. Hildenbrand, D.: Foundations of Geometric Algebra Computing. Springer, Heidelberg (2013)

    Book  Google Scholar 

  25. Hildenbrand, D.: Introduction to Geometric Algebra Computing. Taylor & Francis Group, London (2019)

    Google Scholar 

  26. Hildenbrand D., Charrier, P, Steinmetz C., Pitt, J.: GAALOP home page. http://www.gaalop.de (2020)

  27. Hildenbrand, D.: The Power of Geometric Algebra Computing. Taylor & Francis Group, London (2022)

    Google Scholar 

  28. Hitzer, E.: Vector differential calculus. Mem. Fac. Eng. Fukui Univ. 50(1), 109–125 (2002)

    MathSciNet  Google Scholar 

  29. Hitzer, E.: Multivector differential calculus. Adv. in Appl. Cliff. Algs. 12(2), 135–182 (2002)

    Article  MathSciNet  Google Scholar 

  30. Hitzer, E.: Relativistic physics as application of geometric algebra. In: Adhav, K. (ed.) Proceedings of the International Conference on Relativity 2005 (ICR2005), University of Amravati, India, January 2005, pp. 71–90 (2005). http://vixra.org/abs/1306.0121

  31. Hitzer, E.: Quaternion Fourier transformation on quaternion fields and generalizations. Adv. in App. Cliff. Alg. 17, 497–517 (2007)

    Article  Google Scholar 

  32. Hitzer, E., Tachibana, K., Buchholz, S., Yu, I.: Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like. Adv. in App. Cliff. Alg. 19(2), 339–364 (2009)

    Article  MathSciNet  Google Scholar 

  33. Hitzer, E.: Introduction to Clifford’s geometric algebra. SICE J. Control, Measure., and Syst. Integr. 51(4), 338–350 (2012). http://arxiv.org/abs/1306.1660

  34. Hitzer, E., Nitta, T., Kuroe, Y.: Applications of Clifford’s geometric algebra. Adv. Appl. Clifford Algebras 23, 377–404 (2013). https://doi.org/10.1007/s00006-013-0378-4

    Article  MathSciNet  Google Scholar 

  35. Hitzer, E., Sangwine, S.: Multivector and multivector matrix inverses in real Clifford algebras. Appl. Math. Comput. 311, 375–389 (2017). https://doi.org/10.1016/j.amc.2017.05.027

    Article  MathSciNet  Google Scholar 

  36. Hitzer, E., Sangwine, S.J.: Foundations of conic conformal geometric algebra and compact versors for rotation, translation and scaling. Adv. Appl. Clifford Algebras 29(96), 1–16 (2019). https://doi.org/10.1007/s00006-019-1016-6

    Article  MathSciNet  Google Scholar 

  37. Hitzer, E.: Special affine Fourier transform for space-time algebra signals. In: Magnenat-Thalmann, N. et al. (eds.) Advances in Computer Graphics, CGI 2021, LNCS, vol. 13002, pp. 658–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89029-2_49

  38. Hitzer, E.: Quaternion and Clifford Fourier Transforms, 1st edn. Chapman and Hall/CRC, London (2021)

    Book  Google Scholar 

  39. Hitzer, E.: Extending Lasenby’s embedding of octonions in space-time algebra \(Cl(1,3)\), to all three-and four dimensional Clifford geometric algebras \(Cl(p,q),n=p+q=3,4\). Math. Meth. Appl. Sci., Early View 1–24 (2022). https://doi.org/10.1002/mma.8577

  40. Hitzer, E., Lavor, C., Hildenbrand, D.: Current survey of Clifford geometric algebra applications. Math. Meth. Appl. Sci., Early View 1–31 (2022). https://doi.org/10.1002/mma.8316

  41. Hitzer, E., Kamarianakis, M., Papagiannakis G., Vasik, P.: Survey of New Applications of Geometric Algebra. Authorea preprint. February 20, 1–21 (2023). https://doi.org/10.22541/au.167687105.52780013/v1

  42. Hitzer, E.: On factorization of multivectors in Cl(3,0), Cl(1,2) and Cl(0,3) by exponentials and idempotents. Complex Variables Elliptic Equ. 68(4), 521–543 (2023). https://doi.org/10.1080/17476933.2021.2001462

    Article  MathSciNet  Google Scholar 

  43. Hogan, J.A., Morris, A.J.: Quaternionic wavelets. Num. Func. Anal. Optimization 33(7–9), 1031–1062 (2012). https://doi.org/10.1080/01630563.2012.682140

    Article  MathSciNet  Google Scholar 

  44. Horn, R., Johnson, C.: Matrix Analysis. CUP, Cambridge (UK) (1985)

    Book  Google Scholar 

  45. Hrdina, J., Navrat, A., Vasik, P.: Geometric algebra for conics. Adv. Appl. Clifford Algebras 28(66), 1–21 (2018). https://doi.org/10.1007/s00006-018-0879-2

    Article  MathSciNet  Google Scholar 

  46. Lasenby, A.: Recent applications of conformal geometric algebra. In: Li, H., Olver, P.J., Sommer, G. (eds.) IWMM 2004, LNCS 3519. Springer, Heidelberg (2005)

    Google Scholar 

  47. Lasenby, A.: Some recent results for and octonions within the geometric algebra approach to the fundamental forces of nature. Math. Meth. Appl. Sci., Early View 1–21 (2023). https://doi.org/10.1002/mma.8934

  48. Laville, G., Ramadanoff, I.: Stone-Weierstrass Theorem. https://arxiv.org/pdf/math/0411090.pdf. Last accessed 27 May 2021

  49. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04621-0_2

  50. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)

    Book  Google Scholar 

  51. Lie, S.: On a class of geometric transformations, Ph.D. thesis. University of Oslo (formerly Christiania) (1871)

    Google Scholar 

  52. Lipschitz, R.: Principes d’un calcul algébrique qui contient comme espèces particulières le calcul des quantité imaginaires et des quaternions. C. R. Acad. Sci. Paris 91(619–621), 660–664 (1880)

    Google Scholar 

  53. Lipschitz, R.: Untersuchungen über die Summen von Quadraten. Max Cohen und Sohn, Bonn (1886)

    Google Scholar 

  54. Lounesto, P.: Clifford Algebras and Spinors. CUP, Cambridge (UK) (2001)

    Book  Google Scholar 

  55. Macdonald, A.: Linear and Geometric Algebra. CreateSpace, LaVergne (2011)

    Google Scholar 

  56. Perwass, C.: Free software CLUCalc for intuitive 3D visualizations and scientific calculations. http://www.CLUCalc.info

  57. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)

    Google Scholar 

  58. Porteous, I.: Clifford Algebras and the Classical Groups. CUP, Cambridge (UK) (1995)

    Book  Google Scholar 

  59. Sangwine, S.J., Hitzer, E.: Clifford multivector toolbox (for MATLAB). Adv. Appl. Clifford Algebras 27, 539–558 (2017). https://doi.org/10.1007/s00006-016-0666-x

    Article  MathSciNet  Google Scholar 

  60. Schmeikal, B.: Tessarinen, Nektarinen und andere Vierheiten—Beweis einer Beobachtung von Gerhard Opfer. Mitteilungen der Mathematischen Gesellschaft Hamburg 34, 1–28 (2014)

    MathSciNet  Google Scholar 

  61. Shirokov, D.S.: On computing the determinant, other characteristic polynomial coefficients, and inverse in Clifford algebras of arbitrary dimension. Comp. Appl. Math. 40, 173 (2021). https://doi.org/10.1007/s40314-021-01536-0

    Article  MathSciNet  Google Scholar 

  62. Sobczyk, G., Sanchez, O.L.: Fundamental theorem of calculus. Adv. Appl. Cliff. Algs. 21, 221–231 (2011)

    Article  MathSciNet  Google Scholar 

  63. Sobczyk, G.: Conformal mappings in geometric algebra. Notices of the AMS 59(2), 264–273 (2012)

    MathSciNet  Google Scholar 

  64. Tung, W.-K.: Group Theory in Physics. World Scientific, Singapore (1985)

    Book  Google Scholar 

  65. Vaz, J., Jr., da Rocha, Jr., R.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, Oxford (2019)

    Google Scholar 

  66. Vinberg, E.: A Course in Algebra. Graduate Series in Math. 56, AMS, Providence, Rhode Island (2003)

    Google Scholar 

  67. Wessel, C.: Om Directionens analytiske Betegning, et Forsog, anvendt fornemmelig til plane og sphæriske Polygoners Oplosning, Nye Samling af det Kongelige Danske Videnskabernes Selskabs Skrifter (in Danish). Copenhagen: Royal Danish Acad. Sci. Lett, 5, 469–518 (1799)

    Google Scholar 

  68. Xambó-Descamps, S.: Real Spinorial Groups—A Short Mathematical Introduction. Springer Briefs in Mathematics (SBMAC), Springer, Cham (2018)

    Google Scholar 

  69. Xambó-Descamps, S.: Geometric Algebra Mathematical Structures and Applications. Presentation. https://web.mat.upc.edu/sebastia.xambo/GA/s-uned.pdf. Last accessed 06 July 2023

  70. Zamora Esquivel, J.C.: Vanishing vector rotation in quadric geometric algebra. Adv. Appl. Clifford Algebras 32(46), 1–12 (2022). https://doi.org/10.1007/s00006-022-01234-y

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

E.H.: Now to the King eternal, immortal, invisible, the only God, be honor and glory for ever and ever. Amen. [Bible, 1 Tim. 1:17] E.H. thanks his family for their patient support. We warmly thank L. Dorst for advice on Sect. 4, and for the permission to use Fig. 1. We thank S. Breuils for permission to use Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Hitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hitzer, E., Hildenbrand, D. (2024). Introduction to Geometric Algebra. In: Araujo Da Silva, D.W.H., Hildenbrand, D., Hitzer, E. (eds) Advanced Computational Applications of Geometric Algebra. ICACGA 2022. Springer Proceedings in Mathematics & Statistics, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-55985-3_1

Download citation

Publish with us

Policies and ethics