Abstract
Geometric algebra was initiated by W.K. Clifford over 140 years ago. It unifies all branches of physics, and has found rich applications in robotics, signal processing, ray tracing, virtual reality, computer vision, vector field processing, tracking, geographic information systems and neural computing. This introduction explains the basics of geometric algebra, with concrete examples of the plane, of 3D space, of spacetime, the popular conformal model, and projective geometric algebra. Geometric algebras are ideal to represent geometric transformations in the general framework of Clifford groups (also called versor or Lipschitz groups). Geometric (algebra based) calculus allows, e.g., to optimize learning algorithms of Clifford neurons, etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The inner product defines the measurement of length and angle.
- 2.
This setting amounts to an algebra generating relationship.
- 3.
No product sign will be introduced, simple juxtaposition implies the geometric product just like \(2x = 2 \times x\).
- 4.
A \(\mathbb {K}\)-isometry between two inner-product spaces is a \(\mathbb {K}\)-linear mapping preserving the inner products.
- 5.
A \(\mathbb {K}\)-algebra is a \(\mathbb {K}\)-vector space equipped with an associative and multilinear product. An inner-product \(\mathbb {K}\)-algebra is a \(\mathbb {K}\)-algebra equipped with an inner product structure when taken as \(\mathbb {K}\)-vector space.
- 6.
Important fields are real \(\mathbb {R}\) and complex numbers \(\mathbb {C}\), etc.
- 7.
That is a \(\mathbb {K}\)-linear homomorphism preserving the inner products, i.e., a \(\mathbb {K}\)-linear mapping preserving both the products of the algebras when taken as rings, and the inner products of the algebras when taken as inner-product vector spaces.
- 8.
The setting \(e_{\emptyset }=1\) is frequently used in geometric algebra, but not necessary.
- 9.
See also Remark 1.
- 10.
- 11.
Note that reflections at hyperplanes are nothing but the Householder transformations [44] of matrix analysis.
- 12.
A hyperplane of a nD space is a \((n-1)\)D subspace, thus a hyperplane of \(\mathbb {R}^2\), \(n=2\), is a 1D (\(2-1=1\)) subspace, i.e. a line. Every hyperplane is characterized by a vector normal to the hyperplane.
- 13.
Reversion is an anti-automorphism. Often a dagger \(A^{\dagger }\) is used instead of the tilde, as well as the term transpose.
- 14.
Note, that in general for Clifford algebras Cl(n, 0) of Euclidean spaces \(\mathbb {R}^{n,0}\) we have the identity \(\textrm{Spin}(n) = \textrm{Spin}_+(n)\), where \(\textrm{Spin}(n) = \textrm{Spin}(n,0)\). The reason is that \(A\widetilde{A} < 0\) is only possible for non-Euclidean spaces \(\mathbb {R}^{p,q}\), with \(q>0\).
- 15.
Two-fold covering means, that there are always two elements \(\pm A\) in \(\textrm{Pin}(2,0)\), \(\textrm{Spin}(2,0)\), and \(\textrm{Spin}_+(2,0)\), representing one element in \(\textrm{O}(2,0)\), \(\textrm{SO}(2,0)\) and \(\textrm{SO}_+(2,0)\), respectively.
- 16.
Also called grade projection.
- 17.
Strictly speaking, Cl(3, 0) is the algebra of directions in three dimensions, respectively the algebra of hyperplanes (and subspaces) passing through the origin. It is closely related to the linear algebra of \(\mathbb {R}^3\).
- 18.
The minus signs are only chosen, to make the product of two bivectors identical to the third, and not minus the third.
- 19.
Obviously, we can alternatively select any unit bivector \({{\textbf {u}}}\) and obtain the tessarines \(\{1, {{\textbf {u}}}i_3, {{\textbf {u}}}, i_3 \}\). The two specifications are related by \({{\textbf {u}}}= u i_3\) or \(u = -{{\textbf {u}}}i_3 = {{\textbf {u}}}^*\).
- 20.
In the context of blade subspaces, whenever a blade B contains another blade A as factor, then the geometric product is reduced to left or right contraction: \(A B = A\rfloor B, B A = B \lfloor A\).
- 21.
- 22.
To include \(e_{23}\) one can simply compute \(A-P_B(A) = e_3+e_{23}\).
- 23.
The symbol \(\vee \) stems from Grassmann-Cayley algebra.
- 24.
For definition and computation of the meet see also Sect. 4 of [5].
- 25.
Theorem 4 of [61] shows in full generality how to compute the characteristic polynomial of any \(M \in Cl(p,q)\), including the determinant and adjugate.
- 26.
Note that some authors prefer opposite signature Cl(3, 1), e.g., [37]. Furthermore, various names are in use, like Clifford’s geometric algebra of spacetime, geometric algebra of spacetime, Clifford algebra of spacetime, or geometric algebra of Minkowski spacetime, etc.
- 27.
Unique up to a nonzero scalar factor.
- 28.
Note the alternative notations: e instead of \({{{\boldsymbol{e}}}}_0\) in [49], or \(\bar{n}\) for \(e_0\) and n for \({{{\boldsymbol{e}}}}_{\infty }\) with \(n\cdot \bar{n} = 2\) in [46], or \( o \) for \({{{\boldsymbol{e}}}}_0\) and \(\infty \) for \({{{\boldsymbol{e}}}}_{\infty }\) with \( o \cdot \infty =-2\) in [12], etc.
- 29.
We use for null vectors the notation \(\textbf{e}_{o}\), and \(\textbf{e}_{\infty }\) with added indexes 1,2,3, because this intuitive notation for CGA null vectors became widespread with [10], replacing the earlier notation \(\overline{n}\) and n. The notation \(\overline{n}\) and n with added indexes 1,2,3 was used in [57], but [6] consistently combined instead \(\textbf{e}_{o}\), and \(\textbf{e}_{\infty }\) with added indexes 1,2,3, etc. [36] adopts the notation for basis vectors following [6].
- 30.
The parameters \(\lambda _i\), \(i=1,2,3\), parameterize a continuous set of horospheres [15].
- 31.
- 32.
In the case of Cl(p, q) with \(q>0\) one can use the principal reverse \(g(\boldsymbol{x})^T\) of page xx instead of the reverse \(\widetilde{g(\boldsymbol{x})}\).
References
Abłamowicz, R.: Structure of spin groups associated with degenerate Clifford algebras. J. Math. Phys. 27(1), 1–6 (1986)
Abłamowicz, A., Fauser, B.: On the transposition anti-involution in real Clifford algebras I: the transposition map. Linear and Multilinear Algebra 59(12), 1331–1358 (2011). https://doi.org/10.1080/03081087.2010.517201
Ahlfors, L.V.: Moebius transformations in \({\mathbb{R} }^n\) expressed through \(2\times 2\) matrices of Clifford numbers. Complex Variables 5, 215–224 (1986)
Altmann, S.: Rotations, Quaternions, and Double Groups. Dover, New York (1986)
Barnabei, M., Brini, A., Rota, G.: On the exterior calculus of invariant theory. J. Algebra 96, 120–160 (1985). https://doi.org/10.1016/0021-8693(85)90043-2
Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric algebra of \({\mathbb{R} }^{9,6}\). Adv. Appl. Clifford Algebras 28(35), 1–16 (2018). https://doi.org/10.1007/s00006-018-0851-1
Breuils, S., Tachibana, K., Hitzer, E.: Introduction to Clifford’s Geometric Algebra, pp. 1–10 (2021). Preprint: https://vixra.org/abs/2108.0145. Last accessed 27 Aug 2021
Breuils, S., Tachibana, K., Hitzer, E.: New applications of Clifford’s geometric algebra. Adv. Appl. Clifford Algebras 32(17), 1–39 (2022). https://doi.org/10.1007/s00006-021-01196-7
Doran, D., Lasenby, A.: Geometric Algebra for Physicists. CUP, Cambridge (UK) (2003)
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science—An Object-Oriented Approach to Geometry. Morgan Kaufmann, San Francisco (2007)
Dorst, L.: The inner products of geometric algebra, In: Dorst, L., Doran, C., Lasenby, J.(eds.), Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Boston, MA. (2002). https://doi.org/10.1007/978-1-4612-0089-5_2
Dorst, L.: Conformal villarceau rotors. Adv. Appl. Clifford Algebras 29(44), 1–20 (2019). https://doi.org/10.1007/s00006-019-0960-5
Dorst, L., De Keninck, S.: A Guided Tour to the Plane-Based Geometric Algebra PGA (Version 2.0). 14 Mar. 2022. https://bivector.net/PGA4CS.pdf. Last accessed 23 Dec 2022
Easter, R.B., Hitzer, E.: Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27, 2175–2199 (2017). https://doi.org/10.1007/s00006-017-0784-0
El Mir, G., Saint-Jean, C., Berthier, M.: Conformal geometry for viewpoint change representation. Adv. Appl. Clifford Algebras 24(2), 443–463 (2014). https://doi.org/10.1007/s00006-013-0431-3
Falcao, M.I., Malonek, H.R.: Generalized Exponentials through Appell sets in \({\mathbb{R} }^{n+1}\) and Bessel functions. AIP Conf. Proc. 936, 738–741 (2007)
Farouki, R.T.: Minkowski geometric algebra of complex sets—theory, algorithms, applications. Presentation, https://faculty.engineering.ucdavis.edu/farouki/wp-content/uploads/sites/51/2021/07/Minkowski-geometric-algebra-of-complex-sets.pdf. Last accessed 06 July 2023
Fletcher, P.: Discrete wavelets with quaternion and Clifford coefficients. Adv. Appl. Clifford Algebras 28(59), 1–30 (2018). https://doi.org/10.1007/s00006-018-0876-5
Hestenes, D.: Spacetime Algebra. Birkhäuser, Cham (2015)
Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Kluwer, Dordrecht (1992)
Hestenes, D.: New Foundations for Classical Mechanics. Kluwer, Dordrecht (1999)
Hildenbrand, D., Pitt, J., Koch, A.: Gaalop—high performance parallel computing based on conformal geometric algebra. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing in Engineering and Computer Science, pp. 477–494. Springer, Berlin (2010)
Hildenbrand D., Charrier, P.: Conformal geometric objects with focus on oriented points. In: Gürlebeck, K. (ed.) Proceedings of 9th International Conference on Clifford Algebras and their Applications in Mathematical Physics. Weimar, Germany, 15–20 July 2011, p. 10. Preprint: http://www.gaalop.de/wp-content/uploads/LongConformalEntities_ICCA91.pdf. Last accessed 06 July 2023
Hildenbrand, D.: Foundations of Geometric Algebra Computing. Springer, Heidelberg (2013)
Hildenbrand, D.: Introduction to Geometric Algebra Computing. Taylor & Francis Group, London (2019)
Hildenbrand D., Charrier, P, Steinmetz C., Pitt, J.: GAALOP home page. http://www.gaalop.de (2020)
Hildenbrand, D.: The Power of Geometric Algebra Computing. Taylor & Francis Group, London (2022)
Hitzer, E.: Vector differential calculus. Mem. Fac. Eng. Fukui Univ. 50(1), 109–125 (2002)
Hitzer, E.: Multivector differential calculus. Adv. in Appl. Cliff. Algs. 12(2), 135–182 (2002)
Hitzer, E.: Relativistic physics as application of geometric algebra. In: Adhav, K. (ed.) Proceedings of the International Conference on Relativity 2005 (ICR2005), University of Amravati, India, January 2005, pp. 71–90 (2005). http://vixra.org/abs/1306.0121
Hitzer, E.: Quaternion Fourier transformation on quaternion fields and generalizations. Adv. in App. Cliff. Alg. 17, 497–517 (2007)
Hitzer, E., Tachibana, K., Buchholz, S., Yu, I.: Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like. Adv. in App. Cliff. Alg. 19(2), 339–364 (2009)
Hitzer, E.: Introduction to Clifford’s geometric algebra. SICE J. Control, Measure., and Syst. Integr. 51(4), 338–350 (2012). http://arxiv.org/abs/1306.1660
Hitzer, E., Nitta, T., Kuroe, Y.: Applications of Clifford’s geometric algebra. Adv. Appl. Clifford Algebras 23, 377–404 (2013). https://doi.org/10.1007/s00006-013-0378-4
Hitzer, E., Sangwine, S.: Multivector and multivector matrix inverses in real Clifford algebras. Appl. Math. Comput. 311, 375–389 (2017). https://doi.org/10.1016/j.amc.2017.05.027
Hitzer, E., Sangwine, S.J.: Foundations of conic conformal geometric algebra and compact versors for rotation, translation and scaling. Adv. Appl. Clifford Algebras 29(96), 1–16 (2019). https://doi.org/10.1007/s00006-019-1016-6
Hitzer, E.: Special affine Fourier transform for space-time algebra signals. In: Magnenat-Thalmann, N. et al. (eds.) Advances in Computer Graphics, CGI 2021, LNCS, vol. 13002, pp. 658–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89029-2_49
Hitzer, E.: Quaternion and Clifford Fourier Transforms, 1st edn. Chapman and Hall/CRC, London (2021)
Hitzer, E.: Extending Lasenby’s embedding of octonions in space-time algebra \(Cl(1,3)\), to all three-and four dimensional Clifford geometric algebras \(Cl(p,q),n=p+q=3,4\). Math. Meth. Appl. Sci., Early View 1–24 (2022). https://doi.org/10.1002/mma.8577
Hitzer, E., Lavor, C., Hildenbrand, D.: Current survey of Clifford geometric algebra applications. Math. Meth. Appl. Sci., Early View 1–31 (2022). https://doi.org/10.1002/mma.8316
Hitzer, E., Kamarianakis, M., Papagiannakis G., Vasik, P.: Survey of New Applications of Geometric Algebra. Authorea preprint. February 20, 1–21 (2023). https://doi.org/10.22541/au.167687105.52780013/v1
Hitzer, E.: On factorization of multivectors in Cl(3,0), Cl(1,2) and Cl(0,3) by exponentials and idempotents. Complex Variables Elliptic Equ. 68(4), 521–543 (2023). https://doi.org/10.1080/17476933.2021.2001462
Hogan, J.A., Morris, A.J.: Quaternionic wavelets. Num. Func. Anal. Optimization 33(7–9), 1031–1062 (2012). https://doi.org/10.1080/01630563.2012.682140
Horn, R., Johnson, C.: Matrix Analysis. CUP, Cambridge (UK) (1985)
Hrdina, J., Navrat, A., Vasik, P.: Geometric algebra for conics. Adv. Appl. Clifford Algebras 28(66), 1–21 (2018). https://doi.org/10.1007/s00006-018-0879-2
Lasenby, A.: Recent applications of conformal geometric algebra. In: Li, H., Olver, P.J., Sommer, G. (eds.) IWMM 2004, LNCS 3519. Springer, Heidelberg (2005)
Lasenby, A.: Some recent results for and octonions within the geometric algebra approach to the fundamental forces of nature. Math. Meth. Appl. Sci., Early View 1–21 (2023). https://doi.org/10.1002/mma.8934
Laville, G., Ramadanoff, I.: Stone-Weierstrass Theorem. https://arxiv.org/pdf/math/0411090.pdf. Last accessed 27 May 2021
Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04621-0_2
Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)
Lie, S.: On a class of geometric transformations, Ph.D. thesis. University of Oslo (formerly Christiania) (1871)
Lipschitz, R.: Principes d’un calcul algébrique qui contient comme espèces particulières le calcul des quantité imaginaires et des quaternions. C. R. Acad. Sci. Paris 91(619–621), 660–664 (1880)
Lipschitz, R.: Untersuchungen über die Summen von Quadraten. Max Cohen und Sohn, Bonn (1886)
Lounesto, P.: Clifford Algebras and Spinors. CUP, Cambridge (UK) (2001)
Macdonald, A.: Linear and Geometric Algebra. CreateSpace, LaVergne (2011)
Perwass, C.: Free software CLUCalc for intuitive 3D visualizations and scientific calculations. http://www.CLUCalc.info
Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)
Porteous, I.: Clifford Algebras and the Classical Groups. CUP, Cambridge (UK) (1995)
Sangwine, S.J., Hitzer, E.: Clifford multivector toolbox (for MATLAB). Adv. Appl. Clifford Algebras 27, 539–558 (2017). https://doi.org/10.1007/s00006-016-0666-x
Schmeikal, B.: Tessarinen, Nektarinen und andere Vierheiten—Beweis einer Beobachtung von Gerhard Opfer. Mitteilungen der Mathematischen Gesellschaft Hamburg 34, 1–28 (2014)
Shirokov, D.S.: On computing the determinant, other characteristic polynomial coefficients, and inverse in Clifford algebras of arbitrary dimension. Comp. Appl. Math. 40, 173 (2021). https://doi.org/10.1007/s40314-021-01536-0
Sobczyk, G., Sanchez, O.L.: Fundamental theorem of calculus. Adv. Appl. Cliff. Algs. 21, 221–231 (2011)
Sobczyk, G.: Conformal mappings in geometric algebra. Notices of the AMS 59(2), 264–273 (2012)
Tung, W.-K.: Group Theory in Physics. World Scientific, Singapore (1985)
Vaz, J., Jr., da Rocha, Jr., R.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, Oxford (2019)
Vinberg, E.: A Course in Algebra. Graduate Series in Math. 56, AMS, Providence, Rhode Island (2003)
Wessel, C.: Om Directionens analytiske Betegning, et Forsog, anvendt fornemmelig til plane og sphæriske Polygoners Oplosning, Nye Samling af det Kongelige Danske Videnskabernes Selskabs Skrifter (in Danish). Copenhagen: Royal Danish Acad. Sci. Lett, 5, 469–518 (1799)
Xambó-Descamps, S.: Real Spinorial Groups—A Short Mathematical Introduction. Springer Briefs in Mathematics (SBMAC), Springer, Cham (2018)
Xambó-Descamps, S.: Geometric Algebra Mathematical Structures and Applications. Presentation. https://web.mat.upc.edu/sebastia.xambo/GA/s-uned.pdf. Last accessed 06 July 2023
Zamora Esquivel, J.C.: Vanishing vector rotation in quadric geometric algebra. Adv. Appl. Clifford Algebras 32(46), 1–12 (2022). https://doi.org/10.1007/s00006-022-01234-y
Acknowledgements
E.H.: Now to the King eternal, immortal, invisible, the only God, be honor and glory for ever and ever. Amen. [Bible, 1 Tim. 1:17] E.H. thanks his family for their patient support. We warmly thank L. Dorst for advice on Sect. 4, and for the permission to use Fig. 1. We thank S. Breuils for permission to use Fig. 2.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hitzer, E., Hildenbrand, D. (2024). Introduction to Geometric Algebra. In: Araujo Da Silva, D.W.H., Hildenbrand, D., Hitzer, E. (eds) Advanced Computational Applications of Geometric Algebra. ICACGA 2022. Springer Proceedings in Mathematics & Statistics, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-55985-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-55985-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55984-6
Online ISBN: 978-3-031-55985-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)