Abstract
This paper introduces the Double Conformal/Darboux Cyclide Geometric Algebra (DCGA), based in the \(\mathcal {G}_{8, 2}\) Clifford geometric algebra. DCGA is an extension of CGA and has entities representing points and general (quartic) Darboux cyclide surfaces in Euclidean 3D space, including circular tori and all quadrics, and all surfaces formed by their inversions in spheres. Dupin cyclides are quartic surfaces formed by inversions in spheres of torus, cylinder, and cone surfaces. Parabolic cyclides are cubic surfaces formed by inversions in spheres that are centered on points of other surfaces. All DCGA entities can be transformed by versors, and reflected in spheres and planes.
Similar content being viewed by others
References
Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebras 27(1), 439–452 (2017). doi:10.1007/s00006-016-0653-2
Bromborsky, A.: Geom. Alg, Module for Sympy (2016)
Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2007)
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco (2009)
Easter, R.B.: Conic and Cyclidic Sect. in the \({\cal{G}}_{8,2}\) Geom. Alg., DCGA (2015). ViXra:1511.0182
Easter, R.B.: Diff. Oper. in the \({\cal{G}}_{8,2}\) Geom. Alg., DCGA (2015). ViXra:1512.0303
Easter, R.B.: \({\cal{G}} _{8,2}\) Geom. Alg., DCGA (2015). ViXra:1508.0086
Easter, R.B.: Double Conformal Space-Time Alg. (2016). ViXra:1602.0114
Easter, R.B., Hitzer, E.: Conic and Cyclidic Sections in Double Conformal Geometric Algebra \(\cal{G}_{8,2}\), Proceedings SSI 2016, Session SS11, 6–8 Dec. Ohtsu, Shiga (2016)
Eastwood, M.G., Michor, P.W.: Some remarks on the Plücker relations. Rend. Circ. Mat. Palermo II–63, 85–88 (2000)
Goldman, R., Mann, S.: R(4, 4) as a computational framework for 3-dimensional computer graphics. Adv. Appl. Clifford Algebras 25(1), 113–149 (2015)
Hestenes, D.: New Found. for Class. Mech. Kluwer, Dordrecht (1999)
Hestenes, D., Sobczyk, G.: Cliff. Alg. to Geom. Calc., A Unif. Lang. for Math. and Phys. Kluwer, Dordrecht (1984)
Hildenbrand, D.: Found. of Geom. Alg. Comp. Springer, New York (2013)
Hitzer, E.: Conic sections and meet intersections in geometric algebra. In: Li, H., Olver, P., Sommer, G. (eds.) Computer Algebra and Geometric Algebra with Applications. LNCS 3519, pp. 350–362. Springer, New York (2005)
Hitzer, E.: Crystal planes and reciprocal space in Clifford geometric algebra. Math. Meth. Appl. Sci. 34(12), 1421–1429 (2011)
Hitzer, E.: Introduction to Clifford’s Geometric Algebra, SICE J. Control Meas. Syst. Integr. 51(4):338–350 (2012). arXiv:1306.1660
Hitzer, E., Tachibana, K., Buchholz, S., Yu, I.: Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like. Adv. Appl. Clifford Algebras 19(2), 339–364 (2009). doi:10.1007/s00006-009-0160-9
Hitzer, E., Nitta, T., Kuroe, Y.: Applications of Clifford’s geometric algebra. Adv. Appl. Clifford Algebras, vol. 23, Online First, March 2013 (2013), pp. 377–404. doi:10.1007/s00006-013-0378-4. arXiv:1305.5663
Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)
Perwass, C.: Geom. Alg. with Appl. in Eng. Springer, New York (2009)
Pottmann, H., Shi, L., Skopenkov, M.: Darboux cyclides and webs from circles. Comp. Aided Geom. Des. 29(1), 77–97 (2012)
Rosenhahn, B.: Pose Estim. Revisited, PhD thesis, Christian-Albrechts-Univ. zu Kiel, September (2003)
Schrott, M., Odehnal, B.: Ortho-circles of Dupin cyclides. J. Geom. Graph. 10(1), 73–98 (2006)
Sommer, G. (ed.) Geom. Comp. with Cliff. Alg., The. Found. and Appl. in Comp. Vis. and Robotics. Springer, Berlin (2001)
SymPy Dev. Team. SymPy: Python libr. for symb. math. (2016)
Acknowledgements
We thank the organizers of the CGI 2016 conference in Heraklion, Crete, Greece, and in particular the organizers of the GACSE 2016 workshop day at CGI 2016. We further deeply thank the anonymous reviewers for their time consuming detailed study of our manuscript and very many suggestions for improvement.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Easter, R.B., Hitzer, E. Double Conformal Geometric Algebra. Adv. Appl. Clifford Algebras 27, 2175–2199 (2017). https://doi.org/10.1007/s00006-017-0784-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00006-017-0784-0