Abstract
Constraint Programming models have been recently proposed to solve cryptanalysis problems for symmetric block ciphers such as AES. These models are more efficient than dedicated approaches but their design is difficult: straightforward models do not scale well and it is necessary to add advanced constraints derived from cryptographic properties. We introduce a global constraint which simplifies the modelling step and improves efficiency. We study its complexity, introduce propagators and experimentally evaluate them on two cryptanalysis problems (single-key and related-key) for two block ciphers (AES and Midori).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.: MILP modeling for (large) s-boxes to optimize probability of differential characteristics. IACR Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)
Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency ariant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Biere, A.: Yet another local search solver and lingeling and friends entering the sat competition 2014, pp. 39–40, January 2014
Biham, E.: New types of cryptoanalytic attacks using related keys (extended abstract). In: EUROCRYPT, LNCS, vol. 765, pp. 398–409. Springer (1993)
Biham, E., Shamir, A.: Differential cryptanalysis of feal and N-Hash. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 1–16. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_1
Biryukov, A., Nikolić, I.: Automatic search for related-key differential characteristics in byte-oriented block ciphers: application to AES, Camellia, Khazad and others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_17
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI 2004, pp. 146–150. IOS Press (2004)
Cid, C., Huang, T., Peyrin, T., Sasaki, Yu., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_22
FIPS 197: Advanced Encryption Standard. Federal Information Processing Standards Publication 197 (2001). u.S. Department of Commerce/N.I.S.T
Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_11
Gérault, D.: Security Analysis of Contactless Communication Protocols. Ph.D. thesis, Université Clermont Auvergne (2018)
Gérault, D., Lafourcade, P.: Related-key cryptanalysis of Mmidori. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 287–304. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_16
Gerault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key differential characteristics with constraint programming. Artif. Intell. 278, 103183 (2020)
Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_37
Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_16
Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8
Lafitte, F.: Cryptosat: a tool for sat-based cryptanalysis. IET Inf. Secur. 12(6), 463–474 (2018)
Le clément de saint Marcq, V., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain implementation. In: CP Workshop on Techniques for Implementing Constraint Programming Systems (TRICS) (2013). https://hal.archives-ouvertes.fr/hal-01339250
Minier, M., Solnon, C., Reboul, J.: Solving a symmetric key cryptographic problem with constraint programming. In: Workshop on Constraint Modelling and Reformulation (ModRef), pp. 1–13 (2014)
Mouha, N., Preneel, B.: A proof that the ARX cipher salsa20 is secure against differential cryptanalysis. IACR Cryptology ePrint Archive 2013, p. 328 (2013)
Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016). http://www.choco-solver.org
Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24
Sun, L., Wang, W., Wang, M.: More accurate differential properties of led64 and midori64. IACR Trans. Symmetric Cryptol. 2018(3), 93–123 (2018)
Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming. In: 24th International Conference on Fast Software Encryption (2017)
Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (Related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9
Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_9
Zhou, N.-F., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with Picat. SIS. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25883-6
Acknowledgement
This work has been funded by ANR DeCrypt (ANR-18-CE39-0007). We thank Charles Prud’homme for answering our numerous questions on Choco.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rouquette, L., Solnon, C. (2020). abstractXOR: A global constraint dedicated to differential cryptanalysis. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-58475-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58474-0
Online ISBN: 978-3-030-58475-7
eBook Packages: Computer ScienceComputer Science (R0)