[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constraint Programming Models for Chosen Key Differential Cryptanalysis

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9892))

Abstract

In this paper, we introduce Constraint Programming (CP) models to solve a cryptanalytic problem: the chosen key differential attack against the standard block cipher AES. The problem is solved in two steps: In Step 1, bytes are abstracted by binary values; In Step 2, byte values are searched. We introduce two CP models for Step 1: Model 1 is derived from AES rules in a straightforward way; Model 2 contains new constraints that remove invalid solutions filtered out in Step 2. We also introduce a CP model for Step 2. We evaluate scale-up properties of two classical CP solvers (Gecode and Choco) and a hybrid SAT/CP solver (Chuffed). We show that Model 2 is much more efficient than Model 1, and that Chuffed is faster than Choco which is faster than Gecode on the hardest instances of this problem. Furthermore, we prove that a solution claimed to be optimal in two recent cryptanalysis papers is not optimal by providing a better solution.

This research was conducted with the support of the FEDER program of 2014-2020, the region council of Auvergne, and the Digital Trust Chair of the University of Auvergne.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The upper bound \(\frac{l}{6}\) comes from the fact that \(D_{\alpha ,\beta }\le 2^{-6}, \forall (\alpha ,\beta )\ne (0^8,0^8)\), and probability \(p_2\) must be larger than \(2^{-l}\) which corresponds to a probability with uniform distribution of the \(2^l\) possible keys.

  2. 2.

    We tried other parameter settings. The best results were obtained with default ones.

  3. 3.

    Let us recall that it has been shown in [3] that it is useless to try to solve the problem for more than 5 rounds when the key length is \(l=128\).

References

  1. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  2. Biham, E., Shamir, A.: Differential cryptanalysis of feal and N-Hash. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 1–16. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  3. Biryukov, A., Nikolić, I.: Automatic search for related-key differential characteristics in byte-oriented block ciphers: application to AES, Camellia, Khazad and others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Chu, G., Stuckey, P.J.: Chuffed solver description (2014). http://www.minizinc.org/challenge2014/description_chuffed.txt

  5. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  6. De, D., Kumarasubramanian, A., Venkatesan, R.: Inversion attacks on secure hash functions using sat solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 377–382. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Fages, J.-G.: On the use of graphs within constraint-programming. Constraints 20(4), 498–499 (2015)

    Article  MathSciNet  Google Scholar 

  8. FIPS 197. Advanced Encryption Standard. Federal Information Processing Standards Publication 197. U.S. Department of Commerce/N.I.S.T (2001)

    Google Scholar 

  9. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Team, G.: Gecode: Generic constraint development environment (2006). http://www.gecode.org

  11. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-step SHA-1. IACR Cryptology ePrint Archive 2015:530 (2015)

    Google Scholar 

  12. Legendre, F., Dequen, G., Krajecki, M.: Encoding hash functions as a sat problem. In: IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, 7–9 November 2012, pp. 916–921. IEEE (2012)

    Google Scholar 

  13. Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 527–543. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Minier, M., Solnon, C., Reboul, J.: Solving a Symmetric Key Cryptographic Problem with Constraint Programming. In: ModRef 2014, Workshop of the CP 2014 Conference, September 2014, Lyon, France, July 2014

    Google Scholar 

  15. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash functions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced keccak hash functions. Inf. Process. Lett. 113(10–11), 392–397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

    Google Scholar 

  18. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Prudhomme, C., Fages, J.-G.: An introduction to choco 3.0: an open source java constraint programming library. In: CP Workshop on CP Solvers: Modeling, Applications, Integration, and Standardization (2013)

    Google Scholar 

  20. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Sun, S., Hu, L., Wang, M., Yang, Q., Qiao, K., Ma, X., Song, L., Shan, J.: Extending the applicability of the mixed-integer programming technique in automatic differential cryptanalysis. In: López, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 141–157. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  22. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014)

    Google Scholar 

  23. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Acknowledgements

Many thanks to Jean-Guillaume Fages, for sending us Choco 4 before the official public release, and to Yves Deville, Pierre Schaus and François-Xavier Standaert for enriching discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gerault .

Editor information

Editors and Affiliations

Appendices

Appendix

A Solution with \(obj=12\) Active S-Boxes for AES with \(r=4\) Rounds and \(l=128\) Bits

The byte-consistent binary solution is displayed below. Each binary variable assigned to 1 is colored in blue, and is surrounded in red when it belongs to the objective function (i.e., it passes through an S-box).

figure a

The optimal byte solution is displayed below, in hexadecimal notation.

Round

\(\delta X = X \oplus X'\)

\(\delta K = K \oplus K'\)

Init

0d151846 0dacf2f2 0dfff2f2 0dacf2f2

 

0

00000000 00ac0000 00000000 00ac0000

0d151846 0d00f2f2 0dfff2f2 0d00f2f2

1

00000000 00ff0000 00ff0000 00000000

0dfff2f2 00ff0000 0dfff2f2 00000000

2

00000000 00ff0000 00000000 00000000

0dfff2f2 0d00f2f2 00000000 00000000

3

00000000 00ff0000 00ff0000 00ff0000

0dfff2f2 00ff0000 00ff0000 00ff0000

End/4

fa000000 faff0000 fa000000 f700f2f2

f7fff2f2 f700f2f2 f7fff2f2 f700f2f2

The corresponding plaintexts X and \(X'\) and keys K and \(K'\) are displayed below, in hexadecimal notation. The probability \(p_2\) associated with these plaintexts and keys is \(p_2=2^{-79}\) whereas it is equal to \(p_2=2^{-81}\) in the solution given in [3, 9] (solution with \(obj=13\) active S-boxes).

Round

K

\(K'\)

0

00000000 00000000 00000000 00000000

0d151846 0d00f2f2 0dfff2f2 0d00f2f2

1

62636363 62636363 62636363 62636363

6f9c9191 629C6363 6f639191 62636363

2

9b9898c9 f9fbfbaa 9b9898c9 f9fbfbaa

96676a3b f4fb0958 9b9898c9 f9fbfbaa

3

90973450 696ccffa f2f45733 0b0fac99

9d68c6a2 6993cffa f2b5733 0bf0ac99

4

ee60da7b 876a1581 759e42b2 7e91ee2b

19f92889 706ae773 8261b040 89911cd9

Round

X

\(X'\)

Init.

6b291f8d a800d3d7 f239d5a4 510035ef

663c07cb a5ac2125 ffc62756 5cacc71d

0

6b291f8d a800d3d7 f239d5a4 510035ef

6b291f8d a8acd3d7 f239d5a4 51ac35ef

1

e5000327 00796300 0079005c 0000005a

e5000327 00866300 0086005c 0000005a

2

2e2de80b 5186a759 e0d3cbb2 2b02c803

2e2de80b 5179a759 e0d3cbb2 2b02c803

3

5a74f2ae b979ce4a e286aa6a ea86647b

5a74f2ae b986ce4a e279aa6a ea79647b

End

c501f2fa 4095b6af cdd8f67b 4fadf0a4

3f01f2fa ba6ab6af 37d8f67b b8ad0256

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gerault, D., Minier, M., Solnon, C. (2016). Constraint Programming Models for Chosen Key Differential Cryptanalysis. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44953-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44952-4

  • Online ISBN: 978-3-319-44953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics