Abstract
Out-of-distribution (OOD) detection is necessary in various real-world applications. However, training artificial intelligence models exclusively on in-distribution (ID) data frequently results in misclassifying OOD samples as ID classes, leading to significant adverse consequences. Inspired by recent studies on spurious outlier generation, we propose two novel strategies for generating fake OOD data. The first strategy constructs fake OOD data from the perspective of foreground-background separation by a large vision language model, while the second strategy combines patches from different ID images to create a new composite image as fake OOD data. To further improve the model’s awareness of OOD data, we design a novel loss function and a novel scoring function from two different perspectives to separate ID from OOD data. Our method demonstrates superior OOD detection performance on three widely used benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, Y.H., Park, G.M., Kim, S.T.: Line: Out-of-distribution detection by leveraging important neurons. In: CVPR, pp. 19852–19862 (2023)
Bai, H., Canal, G., Du, X., Kwon, J., Nowak, R.D., Li, Y.: Feed two birds with one scone: Exploiting wild data for both out-of-distribution generalization and detection. In: ICML, pp. 1454–1471 (2023)
Cai, M., Li, Y.: Out-of-distribution detection via frequency-regularized generative models. In: WACV, pp. 5521–5530 (2023)
Cao, T., Huang, C.W., Hui, D.Y.T., Cohen, J.P.: A benchmark of medical out of distribution detection (2020). arXiv:2007.04250
Chen, J., Li, Y., Wu, X., Liang, Y., Jha, S.: Atom: robustifying out-of-distribution detection using outlier mining. In: ECML PKDD, pp. 430–445 (2021)
Chowdhury, S.S., Islam, K.M., Noor, R.: Unsupervised abnormality detection using heterogeneous autonomous systems (2020). arXiv:2006.03733
Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR, pp. 3606–3613 (2014)
Du, X., Wang, Z., Cai, M., Li, Y.: Vos: learning what you don’t know by virtual outlier synthesis (2022). arXiv:2202.01197
Esmaeilpour, S., Liu, B., Robertson, E., Shu, L.: Zero-shot out-of-distribution detection based on the pre-trained model clip. In: AAAI, pp. 6568–6576 (2022)
Fort, S., Ren, J., Lakshminarayanan, B.: Exploring the limits of out-of-distribution detection. In: NeurIPS, pp. 7068–7081 (2021)
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks (2016). arXiv:1610.02136
Kaiming, H., Xiangyu, Z., Shaoqing, R., Jian, S., et al.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: ICCV, pp. 4015–4026 (2023)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks (2017). arXiv:1706.02690
Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J., et al.: Grounding dino: marrying dino with grounded pre-training for open-set object detection (2023). arXiv:2303.05499
Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: NeurIPS, pp. 21464–21475 (2020)
Ming, Y., Fan, Y., Li, Y.: Poem: Out-of-distribution detection with posterior sampling. In: ICML, pp. 15650–15665 (2022)
Ming, Y., Sun, Y., Dia, O., Li, Y.: How to exploit hyperspherical embeddings for out-of-distribution detection (2022)? arXiv:2203.04450
Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: ECCV, pp. 613–628 (2018)
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y., et al.: Reading digits in natural images with unsupervised feature learning. In: NeurIPS, p. 7 (2011)
Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)
Ren, T., Liu, S., Zeng, A., Lin, J., Li, K., Cao, H., Chen, J., Huang, X., Chen, Y., Yan, F., et al.: Grounded sam: assembling open-world models for diverse visual tasks (2024). arXiv:2401.14159
Sun, Y., Guo, C., Li, Y.: React: out-of-distribution detection with rectified activations. In: NeurIPS, pp. 144–157 (2021)
Sun, Z., Qiu, Y., Tan, Z., Zheng, W., Wang, R.: Classifier-head informed feature masking and prototype-based logit smoothing for out-of-distribution detection. IEEE Trans. Circuits Syst. Video Technol. (2024)
Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask inpainting with fourier convolutions. In: WACV, pp. 2149–2159 (2022)
Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., Belongie, S.: The inaturalist species classification and detection dataset. In: CVPR, pp. 8769–8778 (2018)
Wang, H., Li, Z., Feng, L., Zhang, W.: Vim: Out-of-distribution with virtual-logit matching. In: CVPR, pp. 4921–4930 (2022)
Wei, H., Xie, R., Cheng, H., Feng, L., An, B., Li, Y.: Mitigating neural network overconfidence with logit normalization. In: ICML, pp. 23631–23644 (2022)
Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR, pp. 3485–3492. IEEE (2010)
Xu, P., Ehinger, K.A., Zhang, Y., Finkelstein, A., Kulkarni, S.R., Xiao, J.: Turkergaze: crowdsourcing saliency with webcam based eye tracking (2015). arXiv:1504.06755
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: construction of a large-scale image dataset using deep learning with humans in the loop (2015). arXiv:1506.03365
Yu, Y., Shin, S., Lee, S., Jun, C., Lee, K.: Block selection method for using feature norm in out-of-distribution detection. In: CVPR, pp. 15701–15711 (2023)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)
Zhu, F., Cheng, Z., Zhang, X.Y., Liu, C.L.: Openmix: exploring outlier samples for misclassification detection. In: CVPR, pp. 12074–12083 (2023)
Acknowledgement
This work is supported in part by the National Natural Science Foundation of China (grant No. 62071502), the Major Key Project of PCL (grant No. PCL2023A09), and Guangdong Excellent Youth Team Program (grant No. 2023B1515040025).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, P., Chen, J., Zhou, Y., Wang, R. (2025). EFOA: Enhancing Out-of-Distribution Detection by Fake Outlier Augmentation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15033. Springer, Singapore. https://doi.org/10.1007/978-981-97-8502-5_7
Download citation
DOI: https://doi.org/10.1007/978-981-97-8502-5_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8501-8
Online ISBN: 978-981-97-8502-5
eBook Packages: Computer ScienceComputer Science (R0)