[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

EFOA: Enhancing Out-of-Distribution Detection by Fake Outlier Augmentation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15033))

Included in the following conference series:

  • 132 Accesses

Abstract

Out-of-distribution (OOD) detection is necessary in various real-world applications. However, training artificial intelligence models exclusively on in-distribution (ID) data frequently results in misclassifying OOD samples as ID classes, leading to significant adverse consequences. Inspired by recent studies on spurious outlier generation, we propose two novel strategies for generating fake OOD data. The first strategy constructs fake OOD data from the perspective of foreground-background separation by a large vision language model, while the second strategy combines patches from different ID images to create a new composite image as fake OOD data. To further improve the model’s awareness of OOD data, we design a novel loss function and a novel scoring function from two different perspectives to separate ID from OOD data. Our method demonstrates superior OOD detection performance on three widely used benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, Y.H., Park, G.M., Kim, S.T.: Line: Out-of-distribution detection by leveraging important neurons. In: CVPR, pp. 19852–19862 (2023)

    Google Scholar 

  2. Bai, H., Canal, G., Du, X., Kwon, J., Nowak, R.D., Li, Y.: Feed two birds with one scone: Exploiting wild data for both out-of-distribution generalization and detection. In: ICML, pp. 1454–1471 (2023)

    Google Scholar 

  3. Cai, M., Li, Y.: Out-of-distribution detection via frequency-regularized generative models. In: WACV, pp. 5521–5530 (2023)

    Google Scholar 

  4. Cao, T., Huang, C.W., Hui, D.Y.T., Cohen, J.P.: A benchmark of medical out of distribution detection (2020). arXiv:2007.04250

  5. Chen, J., Li, Y., Wu, X., Liang, Y., Jha, S.: Atom: robustifying out-of-distribution detection using outlier mining. In: ECML PKDD, pp. 430–445 (2021)

    Google Scholar 

  6. Chowdhury, S.S., Islam, K.M., Noor, R.: Unsupervised abnormality detection using heterogeneous autonomous systems (2020). arXiv:2006.03733

  7. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR, pp. 3606–3613 (2014)

    Google Scholar 

  8. Du, X., Wang, Z., Cai, M., Li, Y.: Vos: learning what you don’t know by virtual outlier synthesis (2022). arXiv:2202.01197

  9. Esmaeilpour, S., Liu, B., Robertson, E., Shu, L.: Zero-shot out-of-distribution detection based on the pre-trained model clip. In: AAAI, pp. 6568–6576 (2022)

    Google Scholar 

  10. Fort, S., Ren, J., Lakshminarayanan, B.: Exploring the limits of out-of-distribution detection. In: NeurIPS, pp. 7068–7081 (2021)

    Google Scholar 

  11. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks (2016). arXiv:1610.02136

  12. Kaiming, H., Xiangyu, Z., Shaoqing, R., Jian, S., et al.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: ICCV, pp. 4015–4026 (2023)

    Google Scholar 

  14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  15. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks (2017). arXiv:1706.02690

  16. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J., et al.: Grounding dino: marrying dino with grounded pre-training for open-set object detection (2023). arXiv:2303.05499

  17. Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. In: NeurIPS, pp. 21464–21475 (2020)

    Google Scholar 

  18. Ming, Y., Fan, Y., Li, Y.: Poem: Out-of-distribution detection with posterior sampling. In: ICML, pp. 15650–15665 (2022)

    Google Scholar 

  19. Ming, Y., Sun, Y., Dia, O., Li, Y.: How to exploit hyperspherical embeddings for out-of-distribution detection (2022)? arXiv:2203.04450

  20. Neal, L., Olson, M., Fern, X., Wong, W.K., Li, F.: Open set learning with counterfactual images. In: ECCV, pp. 613–628 (2018)

    Google Scholar 

  21. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y., et al.: Reading digits in natural images with unsupervised feature learning. In: NeurIPS, p. 7 (2011)

    Google Scholar 

  22. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)

    Google Scholar 

  23. Ren, T., Liu, S., Zeng, A., Lin, J., Li, K., Cao, H., Chen, J., Huang, X., Chen, Y., Yan, F., et al.: Grounded sam: assembling open-world models for diverse visual tasks (2024). arXiv:2401.14159

  24. Sun, Y., Guo, C., Li, Y.: React: out-of-distribution detection with rectified activations. In: NeurIPS, pp. 144–157 (2021)

    Google Scholar 

  25. Sun, Z., Qiu, Y., Tan, Z., Zheng, W., Wang, R.: Classifier-head informed feature masking and prototype-based logit smoothing for out-of-distribution detection. IEEE Trans. Circuits Syst. Video Technol. (2024)

    Google Scholar 

  26. Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask inpainting with fourier convolutions. In: WACV, pp. 2149–2159 (2022)

    Google Scholar 

  27. Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., Belongie, S.: The inaturalist species classification and detection dataset. In: CVPR, pp. 8769–8778 (2018)

    Google Scholar 

  28. Wang, H., Li, Z., Feng, L., Zhang, W.: Vim: Out-of-distribution with virtual-logit matching. In: CVPR, pp. 4921–4930 (2022)

    Google Scholar 

  29. Wei, H., Xie, R., Cheng, H., Feng, L., An, B., Li, Y.: Mitigating neural network overconfidence with logit normalization. In: ICML, pp. 23631–23644 (2022)

    Google Scholar 

  30. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR, pp. 3485–3492. IEEE (2010)

    Google Scholar 

  31. Xu, P., Ehinger, K.A., Zhang, Y., Finkelstein, A., Kulkarni, S.R., Xiao, J.: Turkergaze: crowdsourcing saliency with webcam based eye tracking (2015). arXiv:1504.06755

  32. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: construction of a large-scale image dataset using deep learning with humans in the loop (2015). arXiv:1506.03365

  33. Yu, Y., Shin, S., Lee, S., Jun, C., Lee, K.: Block selection method for using feature norm in out-of-distribution detection. In: CVPR, pp. 15701–15711 (2023)

    Google Scholar 

  34. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  35. Zhu, F., Cheng, Z., Zhang, X.Y., Liu, C.L.: Openmix: exploring outlier samples for misclassification detection. In: CVPR, pp. 12074–12083 (2023)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China (grant No. 62071502), the Major Key Project of PCL (grant No. PCL2023A09), and Guangdong Excellent Youth Team Program (grant No. 2023B1515040025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixuan Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1205 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P., Chen, J., Zhou, Y., Wang, R. (2025). EFOA: Enhancing Out-of-Distribution Detection by Fake Outlier Augmentation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15033. Springer, Singapore. https://doi.org/10.1007/978-981-97-8502-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8502-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8501-8

  • Online ISBN: 978-981-97-8502-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics