[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Penetration and Microbial Inactivation by High Voltage Atmospheric Cold Plasma in Semi-Solid Material

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Multiple studies have demonstrated atmospheric cold plasma as an effective non-thermal technology for inactivating bacteria, spores, and other microbial contaminants in foods and on non-food surfaces. However, few studies have applied this technique to semi-solid food within a package. This study evaluates the efficacy and the interaction mechanism of high voltage atmospheric cold plasma (HVACP) on Salmonella enterica serovar Typhi (S. enterica) inactivation in agar gels with different compositions. HVACP was generated by a dielectric barrier discharge in air and a modified atmosphere (MA65: 65% O2) in sealed bags. Agar gels of various densities with a pH indicator were inoculated with S. enterica (> 107 cfu) and exposed directly (between the electrode) or indirectly (adjacent to electrode) to 90 kV at 60 Hz for up to 1.5 h. HVACP treatment induced greater than 6 log10 (cfu) reduction in viable bacteria (both with air and MA65) in the plasma penetrated zone exhibiting a pH change. Inactivation of bioluminescent E. coli K12-lux cells in the plasma penetrated zone confirmed that the plasma, and its generated reactive species, inactivates microbes as it penetrates into the gel. A two-minute HVACP treatment resulted in greater than 5 log10 (cfu) S. enterica reduction in applesauce. In summary, these results demonstrate that HVACP can be an effective non-thermal technology to control or even eliminate bacteria populations in semi-solid foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amsden, B. (1998). Solute diffusion within hydrogels. Mechanisms and models. Macromolecules., 31(23), 8382–8395.

    Article  CAS  Google Scholar 

  • André, R., Soo-ghee, O., & Vasco, G. (2013). Line-ratio determination of atomic oxygen and metastable absolute densities in an RF nitrogen late afterglow. Plasma Sources Science and Technology., 22(3), 035009.

    Article  CAS  Google Scholar 

  • Beyrer, M., Smeu, I., Martinet, D., Howling, A., Pina-Pérez, M. C., & Ellert, C. (2020). Cold atmospheric plasma inactivation of microbial spores compared on reference surfaces and powder particles. Food and Bioprocess Technology., 13, 827–837.

    Article  CAS  Google Scholar 

  • Brayfield, R. S., Sanders, S. M., Jassem, A., Lauria, M., Garner, A. L., & Keener, K. M. (2016). Optical absorption spectroscopy of high voltage, cold atmospheric pressure plasmas. In Plasma Science (ICOPS), 2016 IEEE International Conference on, 2016 (pp. 1–1). IEEE.

  • Brayfield, R. S., Jassem, A., Lauria, M. V., Fairbanks, A. J., Keener, K. M., & Garner, A. L. (2018). Characterization of high voltage cold atmospheric plasma generation in sealed packages as a function of container material and fill gas. Plasma Chemistry and Plasma Processing., 38(2), 379–395.

    Article  CAS  Google Scholar 

  • Bruggeman, P. J., & Brandenburg, R. (2013). Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. Journal of physics D: applied physics, 46(46), 464001.

    Article  CAS  Google Scholar 

  • Bruggeman, P. J., Kushner, M. J., Locke, B. R., Gardeniers, J. G. E., Graham, W. G., Graves, D. B., Hofman-Caris, R. C. H. M., Maric, D., Reid, J. P., Ceriani, E., Rivas, D. F., Foster, J. E., Garrick, S. C., Gorbanev, Y., Hamaguchi, S., Iza, F., Jablonowski, H., Klimova, E., Kolb, J., Krcma, F., Lukes, P., Machala, Z., Marinov, I., Mariotti, D., Thagard, S. M., Minakata, D., Neyts, E. C., Pawlat, J., Petrovic, Z. L., Pflieger, R., Reuter, S., Schram, D. C., Schröter, S., Shiraiwa, M., Tarabová, B., Tsai, P. A., Verlet, J. R. R., Tv, W., Wilson, K. R., Yasui, K., & Zvereva, G. (2016). Plasma–liquid interactions: a review and roadmap. Plasma Sources Science and Technology., 25(5), 053002.

    Article  CAS  Google Scholar 

  • Chen, C., Liu, D. X., Liu, Z. C., Yang, A. J., Chen, H. L., Shama, G., & Kong, M. G. (2014). A model of plasma-biofilm and plasma-tissue interactions at ambient pressure. Plasma Chemistry and Plasma Processing., 34(3), 403–441.

    Article  CAS  Google Scholar 

  • Cheng, X., Sherman, J., Murphy, W., Ratovitski, E., Canady, J., & Keidar, M. (2014). The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS ONE., 9(5), e98652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chizoba Ekezie, F.-G., Sun, D.-W., & Cheng, J.-H. (2017). A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends in Food Science & Technology., 69, 46–58.

    Article  CAS  Google Scholar 

  • Choi, Y. H., Kim, J. H., Paek, K. H., Ju, W. T., & Hwang, Y. S. (2005). Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification. Surface and Coatings Technology., 193(1), 319–324.

    Article  CAS  Google Scholar 

  • Dasan, B. G., & Boyaci, I. H. (2018). Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food and Bioprocess Technology., 11(2), 334–343.

    Article  CAS  Google Scholar 

  • Dasan, B. G., Onal-Ulusoy, B., Pawlat, J., Diatczyk, J., Sen, Y., & Mutlu, M. (2017). A new and simple approach for decontamination of food contact surfaces with gliding arc discharge atmospheric non-thermal plasma. Food and Bioprocess Technology, 10(4), 650–661.

    Article  CAS  Google Scholar 

  • Delben, J. A., Zago, C. E., Tyhovych, N., Duarte, S., & Vergani, C. E. (2016). Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS ONE., 11(5), e0155427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. new Journal of Physics, 11(11), 115020.

    Article  CAS  Google Scholar 

  • Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. A. (2012). Deep penetration into tissues of reactive oxygen species generated in floating-electrode dielectric barrier discharge (FE-DBD): an in vitro agarose gel model mimicking an open wound. Plasma Medicine., 2(1-3), 71–83.

    Article  Google Scholar 

  • Dong, X. Y., & Yang, Y. L. (2019). A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food and Bioprocess Technology, 12(8), 1409–1421.

    Article  CAS  Google Scholar 

  • Dong, S., Gao, A., Xu, H., & Chen, Y. (2017). Effects of dielectric barrier discharges (DBD) cold plasma treatment on physicochemical and structural properties of zein powders. Food and Bioprocess Technology, 10(3), 434–444.

    Article  CAS  Google Scholar 

  • Dowling, D. P., O’Neill, F. T., Langlais, S. J., & Law, V. J. (2011). Influence of dc pulsed atmospheric pressure plasma jet processing conditions on polymer activation. Plasma Processes and Polymers., 8(8), 718–727.

    Article  CAS  Google Scholar 

  • Duan, J., Lu, X., & He, G. (2017). On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Physics of Plasmas., 24(7), 073506.

    Article  CAS  Google Scholar 

  • Duarte-Gómez, E. E., Graham, D., Budzik, M., Paxson, B., Csonka, L., Morgan, M., Applegate, B., & San Martín-González, M. F. (2014). High hydrostatic pressure effects on bacterial bioluminescence. LWT - Food Science and Technology., 56(2), 484–493.

    Article  CAS  Google Scholar 

  • Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., Von dem Hagen, T., & Weltmann, K. (2010). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics., 44(1), 013002.

    Article  CAS  Google Scholar 

  • Fathollah, S., Mirpour, S., Mansouri, P., Dehpour, A. R., Ghoranneviss, M., Rahimi, N., Safaie Naraghi, Z., Chalangari, R., & Chalangari, K. M. (2016). Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Scientific Reports., 6, 19144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fatin-Rouge, N., Starchev, K., & Buffle, J. (2004). Size effects on diffusion processes within agarose gels. Biophysical Journal., 86(5), 2710–2719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaunt, L. F., Beggs, C. B., & Georghiou, G. E. (2006). Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Transactions on Plasma Science., 34(4), 1257–1269.

    Article  CAS  Google Scholar 

  • Gaur, N., Szili, E. J., Oh, J. S., Hong, S. H., Michelmore, A., Graves, D. B., Hatta, A., & Short, R. D. (2015). Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue. Applied Physics Letters., 107(10), 103703.

    Article  CAS  Google Scholar 

  • Graves, D. B. (2014). Low temperature plasma biomedicine: a tutorial review a. Physics of Plasmas., 21(8), 080901.

    Article  CAS  Google Scholar 

  • Hames, B. D. (1998). Gel electrophoresis of proteins: a practical approach (Vol. 197). OUP Oxford.

  • Hoffmann, C., Berganza, C., & Zhang, J. (2013). Cold atmospheric plasma: methods of production and application in dentistry and oncology. Medical Gas Research., 3, 21–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingham, D. B., & Pop, I. (1998). Transport phenomena in porous media. Elsevier.

  • Ito, Y., Sakai, O., & Tachibana, K. (2010). Study of plasma enhanced chemical vapor deposition of ZnO films by non-thermal plasma jet at atmospheric pressure. Thin Solid Films., 518(13), 3513–3516.

    Article  CAS  Google Scholar 

  • Ji, H., Han, F., Peng, S., Yu, J., Li, L., Liu, Y., Chen, Y., Li, S., & Chen, Y. (2019). Behavioral solubilization of peanut protein isolate by atmospheric pressure cold plasma (ACP) treatment. Food and Bioprocess Technology, 12(12), 2018–2027.

    Article  CAS  Google Scholar 

  • Jiang, B., Zheng, J., Qiu, S., Wu, M., Zhang, Q., Yan, Z., & Xue, Q. (2014). Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal., 236, 348–368.

    Article  CAS  Google Scholar 

  • Jiang, J., Tan, Z., Shan, C., Pan, J., Pan, G., Liu, Y., Chen, X., & Wang, X. (2016). A new study on the penetration of reactive species in their mass transfer processes in water by increasing the electron energy in plasmas. Physics of Plasmas., 23(10), 103503.

    Article  CAS  Google Scholar 

  • Kang, S. K., Choi, M. Y., Koo, I. G., Kim, P. Y., Kim, Y., Kim, G. J., Mohamed, A.-A. H., Collins, G. J., & Lee, J. K. (2011). Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma. Applied Physics Letters., 98(14), 143702.

    Article  CAS  Google Scholar 

  • Kaviany, M. (2012). Principles of heat transfer in porous media. Springer Science & Business Media.

  • Keener, K. M., & Misra, N. N. (2016). Chapter 14-Future of cold plasma in food processing. In Cold plasma in food and agriculture. p^pp (pp. 343–360). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Kim, J. H., Lee, M. A., Han, G. J., & Cho, B. H. (2014). Plasma in dentistry: a review of basic concepts and applications in dentistry. Acta Odontologica Scandinavica., 72(1), 1–12.

    Article  PubMed  Google Scholar 

  • Kong, M. G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., Van Dijk, J., & Zimmermann, J. (2009). Plasma medicine: an introductory review. New Journal of Physics., 11(11), 115012.

    Article  Google Scholar 

  • Kramida A, Ralchenko, Yu, Reader, J. & NIST ASD Team. (2017). NIST Atomic Spectra Database (version 5.5). In: National Institute of Standards and Technology. p^pp Available: http://physics.nist.gov/asd.

  • Kusano, Y. (2014). Atmospheric pressure plasma processing for polymer adhesion: a review. The Journal of Adhesion., 90(9), 755–777.

    Article  CAS  Google Scholar 

  • Laroussi, M. (2002). Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Transactions on Plasma Science., 30(4), 1409–1415.

    Article  CAS  Google Scholar 

  • Laroussi, M. (2015). Low-temperature plasma jet for biomedical applications: A review. IEEE Transactions on Plasma Science., 43(3), 703–712.

    Article  CAS  Google Scholar 

  • Lehmann, A., Rueppell, A., Schindler, A., Zylla, I. M., Seifert, H. J., Nothdurft, F., Hannig, M., & Rupf, S. (2013). Modification of enamel and dentin surfaces by non-thermal atmospheric plasma. Plasma Processes and Polymers., 10(3), 262–270.

    Article  CAS  Google Scholar 

  • Li, L., Zhang, X., Zhang, M., Li, P., & Chu, P. K. (2014). Microporous N-doped carbon film produced by cold atmospheric plasma jet and its cell compatibility. Vacuum., 108, 27–34.

    Article  CAS  Google Scholar 

  • Lietz, A. M., & Kushner, M. J. (2016). Air plasma treatment of liquid covered tissue: long timescale chemistry. Journal of Physics D: Applied Physics, 49(42), 425204.

    Article  CAS  Google Scholar 

  • Lindsay, A., Anderson, C., Slikboer, E., Shannon, S., & Graves, D. (2015). Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets. Journal of Physics D: Applied Physics, 48(42), 424007.

    Article  CAS  Google Scholar 

  • Liu, Z. C., Liu, D. X., Chen, C., Li, D., Yang, A. J., Rong, M. Z., Chen, H. L., & Kong, M. G. (2015). Physicochemical processes in the indirect interaction between surface air plasma and deionized water. J Phys D: Applied Physics., 48(49), 495201.

    Article  CAS  Google Scholar 

  • Liu, D. X., Liu, Z. C., Chen, C., Yang, A. J., Li, D., Rong, M. Z., Chen, H. L., & Kong, M. G. (2016). Aqueous reactive species induced by a surface air discharge: heterogeneous mass transfer and liquid chemistry pathways., 6, 23737.

  • Lu, X., Naidis, G., Laroussi, M., Reuter, S., Graves, D., & Ostrikov, K. (2016). Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Physics Reports., 630, 1–84.

    Article  CAS  Google Scholar 

  • Lukes, P., Locke, B. R., & Brisset, J. L. (2012). Aqueous-phase chemistry of electrical discharge plasma in water and in gas–liquid environments. In Plasma chemistry and catalysis in gases and liquids (pp. 243–308). Wiley-VCH Verlag GmbH & Co. KGaA.

  • Machala, Z., Janda, M., Hensel, K., Jedlovský, I., Leštinská, L., Foltin, V., Martišovitš, V., & Morvová, M. (2007). Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. Journal of Molecular Spectroscopy., 243(2), 194–201.

    Article  CAS  Google Scholar 

  • Machala, Z., Hensel, K., & Akishev, Y. (2012). Plasma for bio-decontamination, medicine and food security. Springer Science & Business Media.

  • Mamane-Gravetz, H., & Linden, K. G. (2005). Relationship between physiochemical properties, aggregation and U.V. inactivation of isolated indigenous spores in water. Journal of Applied Microbiology., 98(2), 351–363.

    Article  PubMed  CAS  Google Scholar 

  • McClurkin-Moore, J. D., Ileleji, K. E., & Keener, K. M. (2017). The effect of high-voltage atmospheric cold plasma treatment on the shelf-life of distillers wet grains. Food and Bioprocess Technology, 10(8), 1431–1440.

    Article  CAS  Google Scholar 

  • Misra, N. N., Zuizina, D., Cullen, P. J., & Keener, K. M. (2013). Characterization of a novel atmospheric air cold plasma system for treatment of packaged biomaterials. Transactions of the ASABE., 56(3), 1011–1016.

    CAS  Google Scholar 

  • Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J. P., & Cullen, P. J. (2014a). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of bioscience and bioengineering, 118(2), 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Misra, N. N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014b). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125(Supplement C), 131–138.

    Article  CAS  Google Scholar 

  • Misra, N. N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N., & Cullen, P. (2015). Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids., 44, 115–121.

    Article  CAS  Google Scholar 

  • Misra, N. N., Schlüter, O., & Cullen, P. J. (2016). Cold plasma in food and agriculture: fundamentals and applications. Academic Press.

  • Misra, N. N., Yepez, X., Xu, L., & Keener, K. (2019). In-package cold plasma technologies. Journal of food engineering, 244, 21–31.

    Article  CAS  Google Scholar 

  • Moiseev, T., Misra, N., Patil, S., Cullen, P., Bourke, P., Keener, K., & Mosnier, J. (2014). Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sources Science and Technology., 23(6), 065033.

    Article  CAS  Google Scholar 

  • Muhammad, A. I., Xiang, Q., Liao, X., Liu, D., & Ding, T. (2018). Understanding the impact of nonthermal plasma on food constituents and microstructure—a review. Food and bioprocess technology, 11(3), 463–486.

    Article  CAS  Google Scholar 

  • Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual review of food science and technology., 3, 125–142.

    Article  PubMed  CAS  Google Scholar 

  • Oehmigen, K., Hoder, T., Wilke, C., Brandenburg, R., Hahnel, M., Weltmann, K.-D., & von Woedtke, T. (2011). Volume effects of atmospheric-pressure plasma in liquids. IEEE Transactions on plasma science., 39(11), 2646–2647.

    Article  CAS  Google Scholar 

  • Orlandini, I., & Riedel, U. (2000). Chemical kinetics of NO removal by pulsed corona discharges. Journal of Physics D: Applied Physics., 33(19), 2467.

    Article  CAS  Google Scholar 

  • Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O’Donnell, C. P., Bourke, P., Keener, K. M., & Cullen, P. J. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology., 35(1), 5–17.

    Article  CAS  Google Scholar 

  • Panpipat, W., & Chaijan, M. (2020). Effect of atmospheric pressure cold plasma on biophysical properties and aggregation of natural actomyosin from threadfin bream (Nemipterus bleekeri). Food and Bioprocess Technology., 13, 851–859.

    Article  CAS  Google Scholar 

  • Patil, S., Moiseev, T., Misra, N., Cullen, P., Mosnier, J., Keener, K., & Bourke, P. (2014). Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. Journal of Hospital Infection., 88(3), 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Penkov, O. V., Khadem, M., Lim, W. S., & Kim, D. E. (2015). A review of recent applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings Technology and Research., 12(2), 225–235.

    Article  CAS  Google Scholar 

  • Sampedro, F., McAloon, A., Yee, W., Fan, X., & Geveke, D. J. (2014). Cost analysis and environmental impact of pulsed electric fields and high pressure processing in comparison with thermal pasteurization. Food and Bioprocess Technology., 7(7), 1928–1937.

    Article  Google Scholar 

  • Schlegel, J., Köritzer, J., & Boxhammer, V. (2013). Plasma in cancer treatment. Clinical Plasma Medicine., 1(2), 2–7.

    Article  Google Scholar 

  • Sen, Y., & Mutlu, M. (2013). Sterilization of food contacting surfaces via non-thermal plasma treatment: a model study with Escherichia coli-contaminated stainless steel and polyethylene surfaces. Food and Bioprocess Technology, 6(12), 3295–3304.

    Article  CAS  Google Scholar 

  • Shi, H., Cooper, B., Stroshine, R. L., Ileleji, K. E., & Keener, K. M. (2017a). Structures of degradation products and degradation pathways of aflatoxin b1 by high-voltage atmospheric cold plasma (hvacp) treatment. Journal of Agricultural and Food Chemistry., 65(30), 6222–6230.

    Article  PubMed  CAS  Google Scholar 

  • Shi, H., Ileleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017b). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology., 10(6), 1042–1052.

    Article  CAS  Google Scholar 

  • Smoluchowski, M. V. (1903). Contribution to the theory of electro-osmosis and related phenomena. Bull Int Acad Sci Cracovie., 3, 184–199.

    Google Scholar 

  • Stoffels, E., Sakiyama, Y., & Graves, D. B. (2008). Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Transactions on Plasma Science., 36(4), 1441–1457.

    Article  CAS  Google Scholar 

  • Szili, E. J., Oh, J. S., Hong, S. H., Hatta, A., & Short, R. D. (2015). Probing the transport of plasma-generated RONS in an agarose target as surrogate for real tissue: dependency on time, distance and material composition. Journal of Physics D: Applied Physics, 48(20), 202001.

    Article  CAS  Google Scholar 

  • Tian, W., & Kushner, M. J. (2014). Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. Journal of Physics D: Applied Physics, 47(16), 165201.

    Article  CAS  Google Scholar 

  • Ting, K., Kao, J., Hsieh, Y., Chen, C., Chang, C., & Wu, C. (2013). The dry process of ZnO film deposition by atmospheric pressure plasma. In Journal of Physics: Conference Series (Vol. 1, p. 012145). IOP Publishing.

  • Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., & Graves, D. B. (2011). Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics, 44(47), 472001.

    Article  CAS  Google Scholar 

  • Ulbin-Figlewicz, N., Zimoch-Korzycka, A., & Jarmoluk, A. (2014). Antibacterial activity and physical properties of edible chitosan films exposed to low-pressure plasma. Food and Bioprocess Technology, 7(12), 3646–3654.

    Article  CAS  Google Scholar 

  • Van Gils, C. A. J., Hofmann, S., Boekema, B. K. H. L., Brandenburg, R., & Bruggeman, P. J. (2013). Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. Journal of Physics D: Applied Physics., 46(17), 175203.

    Article  CAS  Google Scholar 

  • Vesna, V. K., Biljana, P. D., Milica, J., Goran, M. R., Bratislav, M. O., & Milorad, M. K. (2017). Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. Journal of Physics D: Applied Physics., 50(15), 155205.

    Article  CAS  Google Scholar 

  • Xu, L., Sanders, S. M., Tao, B., Garner, A. L., & Keener, K. M. (2016). Assessment of efficacy and reactive gas species generation for orange juice decontamination using high voltage atmospheric cold plasma. In Plasma Science (ICOPS), 2016 IEEE International Conference on, 2016 (p. 1-1). IEEE.

  • Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food and Bioprocess Technology., 10(10), 1778–1791.

    Article  CAS  Google Scholar 

  • Yang, A., Wang, X., Rong, M., Liu, D., Iza, F., & Kong, M. G. (2011). 1-D fluid model of atmospheric-pressure rf He+O2 cold plasmas: parametric study and critical evaluation. Physics of Plasmas., 18(11), 113503.

    Article  CAS  Google Scholar 

  • Yepez, X. V., & Keener, K. M. (2016). High voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innovative Food Science & Emerging Technologies, 38, 169–174.

    Article  CAS  Google Scholar 

  • Zhang, J., & Oloman, C. W. (2005). Electro-oxidation of carbonate in aqueous solution on a platinum rotating ring disk electrode. Journal of Applied Electrochemistry., 35(10), 945–953.

    Article  CAS  Google Scholar 

  • Zhou, X., & Lee, Y. N. (1992). Aqueous solubility and reaction kinetics of hydroxymethyl hydroperoxide. The Journal of Physical Chemistry., 96(1), 265–272.

    Article  CAS  Google Scholar 

  • Zhou, R., Zhang, X., Bi, Z., Zong, Z., Niu, J., Song, Y., Liu, D., & Yang, S. (2015). Inactivation of Escherichia coli cells in aqueous solution by atmospheric-pressure N2, He, Air, and O2 microplasmas. Applied and Environmental Microbiology., 81(15), 5257–5265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziuzina, D., Boehm, D., Patil, S., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS ONE., 10(9), e0138209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Brad Reuhs, Andrew Kanach, Yiwen Bao, and Chumin Zhang from the Department of Food Science, and Russell Brayfield and Valentina Borja from the Department of Agricultural and Biological Engineering at Purdue University for assistance with the HVACP system and optical absorption spectroscopy measurements and data analysis. We also gratefully acknowledge funding from the College of Agriculture at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernard Tao or Allen L. Garner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yepez, X., Applegate, B. et al. Penetration and Microbial Inactivation by High Voltage Atmospheric Cold Plasma in Semi-Solid Material. Food Bioprocess Technol 13, 1688–1702 (2020). https://doi.org/10.1007/s11947-020-02506-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02506-w

Keywords

Navigation