[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Model of Plasma-Biofilm and Plasma-Tissue Interactions at Ambient Pressure

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper presents the development of a model framework for plasma-biofilm and plasma-tissue interactions that can link molecular simulation of plasma chemistry to functions at a cell population level or a tissue level. This is aided with a reactive penetration model for mass transfer of highly transient plasma species across the gas–liquid boundary and a panel of electrical and thermal thresholds considering pain sensation, protein denaturation and lethal electric currents. Application of this model reveals a number of previously little known findings, for example the penetration of plasma chemistry into highly hydrated biofilms is about 10–20 μm deep for low-power He–O2 plasma and this is closely correlated to the penetration of liquid-phase plasma chemistry dominated by O2 , H2O2, and HO2 or O2 , H2O2, and O3. Optimization by manipulating liquid-phase chemistry is expected to improve the penetration depth to 40–50 μm. For direct plasma treatment of skin tissues at radio frequencies, the key tolerance issue is thermal injuries even with a tissue temperature <50 °C and these can lead to induction of pain and protein denaturation at a small discharge density of 8–15 mA/cm2 over few tens of seconds. These and other results presented offer opportunities to improve plasma-biofilm and plasma-tissue interactions. The model framework reported may be further extended and can be used to non-biomedical applications of low-temperature plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) New J Phys 11:115012

    Article  Google Scholar 

  2. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Plasma Process Polym 5(6):503

    Article  CAS  Google Scholar 

  3. Ginsberg GG, Barkun AN, Bosco JJ, Burdick JS, Isenberg GA, Nakao NL, Petersen BT, Silverman WB, Slivka A, Kelsey PB (2002) Gastrointest Endosc 55(7):807

    Article  Google Scholar 

  4. Isbary G, Morfill G, Schimidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Schimizu T, Steffes B, Bunk W, Monetti R, Zimmermann JL, Pompl R, Stolz W (2010) Br J Dermatol 163(1):78

    CAS  Google Scholar 

  5. Kim HH (2004) Plasma Process Polym 1(2):91

    Article  CAS  Google Scholar 

  6. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Ind Eng Chem Res 45(3):882

    Article  CAS  Google Scholar 

  7. Liston EM, Wertheimer MR, Martinu L (1993) J Adhes Sci Technol 7:1091

    Article  CAS  Google Scholar 

  8. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma Process Polym 3(6–7):392

    Article  CAS  Google Scholar 

  9. Vleugels M, Shama G, Deng XT, Greenacre E, Brocklehurst T, Kong MG (2004) IEEE Trans Plasma Sci 33(2):824

    Article  CAS  Google Scholar 

  10. Perni S, Liu DW, Shama G, Kong MG (2008) J Food Protect 71(2):302

    CAS  Google Scholar 

  11. Niemira BA (2012) J Food Sci 77(3):M171

    Article  CAS  Google Scholar 

  12. Neumann E, Schaeferridder M, Wang Y, Hofschneider PH (1982) EMBO J 1(7):841

    CAS  Google Scholar 

  13. Aihara H, Miyazaki J (1998) Nat Biotech 16(9):867

    Article  CAS  Google Scholar 

  14. Chalise PR, Perni S, Shama G, Novac BM, Smith IR, Kong MG (2006) Appl Phys Lett 89(15):153902

    Article  CAS  Google Scholar 

  15. Gentile AC, Kushner MJ (1995) J Appl Phys 78(3):2074

    Article  CAS  Google Scholar 

  16. Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) J Phys Chem Ref Data 26(6):1329

    Article  CAS  Google Scholar 

  17. Wang YH, Zhang YT, Wang DZ, Kong MG (2007) Appl Phys Lett 90:071501

    Article  CAS  Google Scholar 

  18. Liu DX, Bruggeman P, Iza F, Rong MZ, Kong MG (2010) Plasma Sour Sci Technol 19(2):025018

    Article  CAS  Google Scholar 

  19. Sakiyama Y, Graves DB, Chang H-W, Shimizu T, Morfill G (2012) J Phys D Appl Phys 45:425201

    Article  CAS  Google Scholar 

  20. Murakami T, Niemi K, Gans T, O’Connell D, Graham WG (2013) Plasma Sour Sci Technol 22:015003

    Article  CAS  Google Scholar 

  21. Van Gaens W, Bogaerts A (2013) J Phys D Appl Phys 46(7):275201

    Article  CAS  Google Scholar 

  22. Walsh JL, Shi JJ, Kong MG (2006) Appl Phys Lett 89(16):161505

    Article  CAS  Google Scholar 

  23. Reuter S, Winter J, Schmidt-Bleker A, Trsp H, Hammer MU, Weltmann KD (2012) IEEE Trans Plasma Sci 40(11):2788

    Article  CAS  Google Scholar 

  24. Costerton JW, Stewart PS, Greenberg EP (1999) Science 284(5418):1318

    Article  CAS  Google Scholar 

  25. Bergan T (1981) Rev Infect Dis 3(1):45

    Article  CAS  Google Scholar 

  26. Tannock IF, Lee CM, Tunggal JK, Cowan DSM, Egorin MJ (2002) Clin Cancer Res 8(3):878

    CAS  Google Scholar 

  27. Zhang TC, Bishop PL (1994) Water Res 28(11):2267

    Article  CAS  Google Scholar 

  28. Stewart PS (1996) Antimicrob Agents Chemother 40(11):3517

    Google Scholar 

  29. Wang CJ, Srivastava N, Dibble TS (2009) Appl Phys Lett 95(5):051501

    Article  CAS  Google Scholar 

  30. Langer R (1998) Nature 392(6679):5

    CAS  Google Scholar 

  31. Babaeva NY, Kushner MJ (2010) J Phys D Appl Phys 43:185206

    Article  CAS  Google Scholar 

  32. Babaeva NY, Ning N, Graves DB, Kushner MJ (2012) J Phys D Appl Phys 45:115203

    Article  CAS  Google Scholar 

  33. Dower WJ, Miller JF, Ragsdale CW (1988) Nucleic Acids Res 16(13):6127

    Article  CAS  Google Scholar 

  34. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Pain 52(3):259

    Article  CAS  Google Scholar 

  35. Xu F, Lu TJ, Seffen KA (2008) J Mech Phys Solids 56(5):1852

    Article  CAS  Google Scholar 

  36. Green DR, Reed JC (1998) Science 281:1309

    Article  CAS  Google Scholar 

  37. Treybal RE (1980) Mass-transfer operations, 3rd edn. McGraw-Hill Kohakusha Ltd, Tokyo

    Google Scholar 

  38. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Lancet Oncol 3(8):487

    Article  CAS  Google Scholar 

  39. Craig AD, Reiman EM, Evans A, Bushnell MC (1996) Nature 384:258

    Article  CAS  Google Scholar 

  40. Li Z, Scheraga HA (1987) Proc Natl Acad Sci USA 84(19):6611

    Article  CAS  Google Scholar 

  41. Kitano H (2002) Nature 420:206

    Article  CAS  Google Scholar 

  42. Nielsen CB, Harper HA (1954) Exp Biol Med 86:753

    Article  CAS  Google Scholar 

  43. Kingdon KH (1960) Phys Med Biol 5(1):1

    Article  CAS  Google Scholar 

  44. Krueger AP, Andriese PC, Kotaka S (1963) Int J Biometeorol 7(1):3

    Article  CAS  Google Scholar 

  45. Pratt R, Barnard RW (1960) Am Pharm Ass Sci Ed 49:643

    Article  CAS  Google Scholar 

  46. Kellogg EW III, Yost MG, Barthakur N, Krueger AP (1979) Nature 281:400

  47. Krueger AP, Reed EJ (1976) Science 193(4259):1209

    Article  CAS  Google Scholar 

  48. Deng XT, Shi JJ, Kong MG (2007) J Appl Phys 101(7):074701

    Article  CAS  Google Scholar 

  49. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G (2007) Plasma Chem Plasma Process 27(2):163

    Article  CAS  Google Scholar 

  50. Lee HJ, Shon CH, Kim YS, Kim S, Kim GC, Kong MG (2009) New J Phys 11:115026

    Article  CAS  Google Scholar 

  51. Vandamme M, Robert E, Pesnel S, Barbosa E, Dozias S, Sobilo J, Lerondel S, Le Pape A, Pouvesle JM (2012) Plasma Process Polym 7(3–4):264

    Google Scholar 

  52. Park G, Ryu YH, Hong YJ, Choi EH (2012) Appl Phys Lett 100(6):063703

    Article  CAS  Google Scholar 

  53. Krueger AP, Smith RF (1959) Nature 183:1332

    Article  CAS  Google Scholar 

  54. Krueger AP, Smith RF, Gan Go Ing (1957) J Gen Physiol 41(2):359

  55. Kanazawa S, Kogoma M, Moriwaki T, Okazaki S (1988) J Phys D Appl Phys 21(5):838

    Article  CAS  Google Scholar 

  56. Lieberman MA, Lichtenberg AJ (2005) Principle of plasma discharges and materials processing, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  57. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York

    Google Scholar 

  58. ArthroCare, http://phx.corporate-ir.net/phoenix.zhtml?c=100786&p=irol-newsArticle&ID=300673&highlight=. Accessed on September 21, 2013

  59. PlasmaJet from Plasma Surgical, http://www.plasmasurgical.com/pdf/1.pdf. Accessed on September 21, 2013

  60. Lewis WK, White WG (1924) Ind Eng Chem 16(12):1215

    Article  CAS  Google Scholar 

  61. Higbie R (1935) Am Inst Chem Eng 31:365

    CAS  Google Scholar 

  62. Dankwertz PV (1951) Ind Eng Chem 43(6):1460

    Article  Google Scholar 

  63. Yang AJ, Wang XH, Rong MZ, Liu DX, Iza F, Kong MG (2011) Phys Plasma 18(11):113503

    Article  CAS  Google Scholar 

  64. Yuan X, Raja LL (2003) IEEE Trans Plasma Sci 31(4):495

    Article  CAS  Google Scholar 

  65. Liu DW, Iza F, Kong MG (2008) Appl Phys Lett 93:261503

    Article  CAS  Google Scholar 

  66. Wang Q, Economou DJ, Donnelly VM (2006) J Appl Phys 100:023301

    Article  CAS  Google Scholar 

  67. Sakiyama Y, Graves DB (2009) Plasma Sources Sci Technol 18:025022

    Article  CAS  Google Scholar 

  68. Shi JJ, Kong MG (2006) Phys Rev Lett 96:105009

    Article  CAS  Google Scholar 

  69. Iza F, Lee JK, Kong MG (2007) Phys Rev Lett 99:075004

    Article  CAS  Google Scholar 

  70. Liu DX, Rong MZ, Wang XH, Iza F, Kong MG, Bruggeman P (2010) Plasma Process Polym 7(9–10):846

    Article  CAS  Google Scholar 

  71. Liu DX, Iza F, Wang XH, Kong MG, Rong MZ (2011) Appl Phys Lett 98(22):221501

    Article  CAS  Google Scholar 

  72. Liu DX, Yang AJ, Wang XH, Rong MZ, Iza F, Kong MG (2012) J Phys D Appl Phys 45(30):305205

    Article  CAS  Google Scholar 

  73. Stewart PS (2003) J Bacteriol 185(5):1485

    Article  CAS  Google Scholar 

  74. Stewart PS (1998) Biotechnol Bioeng 59:261

    Article  CAS  Google Scholar 

  75. Klapper I, Dockery J (2010) SIAM Rev 52(2):221

    Article  Google Scholar 

  76. Buettner G and Mason RP, Critical Rev. Oxidative Stress and Aging: Advances in Basic Science, Diagnostics, and Intervention (2003) Ed Cutler RG and Rodriguez, World Scientific, New Jersey, London, Singapore, Hong Kong, vol. 1, Chapter 2, pp. 27–38

  77. Newman JS (1973) Electrochemical systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  78. Cents AHG, Brilman DWF, Versteeg GF (2005) Chem Eng Sci 60:5830

    Article  CAS  Google Scholar 

  79. Pastina B, LaVerne JA (2001) J Phys Chem A 105:9316

    Article  CAS  Google Scholar 

  80. Barat F, Gilles L, Hickel B, Lesigne B (1971) J Phys Chem 75(14):2177

    Article  CAS  Google Scholar 

  81. Schweitzer C, Schmidt R (2003) Chem Rev 103:1685

    Article  CAS  Google Scholar 

  82. Heikes BG (1984) Atmos Environ 18(7):1433

    Article  CAS  Google Scholar 

  83. He ZG, Liu JS, Cai WM (2005) J Electrostat 63:371

    Article  CAS  Google Scholar 

  84. Emfietzoglou D, Nikojoo HA (2007) Radiat Res 167(1):110

    Article  CAS  Google Scholar 

  85. Wizke M, Rumbach P, Go DB, Sankaran RM (2012) J Phys D Appl Phys 45:442001

    Article  CAS  Google Scholar 

  86. Walsh JL, Liu DX, Iza F, Rong MZ, Kong MG (2010) J Phys D Appl Phys 43(3):032001

    Article  CAS  Google Scholar 

  87. Eyring H (1936) J Chem Phys 4:283

    Article  CAS  Google Scholar 

  88. Newman JS (1973) Electrochemical systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  89. Dobrynin D, Arjunan K, Fridman A, Friedman G, Clyne AM (2011) J Phys D Appl Phys 44:075201

    Article  CAS  Google Scholar 

  90. Boxhammer V, Morfill GE, Jokipii JR, Shimizu T, Klampfl T, Li Y-F, Koritzer J, Schlegel J, Zimmermann JL (2012) New J Phys 14:113042

    Article  CAS  Google Scholar 

  91. Lee HWK, Lee HW, Kang SK, Kim HY, Won IH, Jeon SM, Lee JK (2013) Plasma Sources Sci Technol 22:055008

    Article  CAS  Google Scholar 

  92. Kong MG, MRS Spring 2012; Kong GEC 2012; Kushner MJ, ICOPS 2013; Kong MG, ISPC 2013

  93. Whitman WG (1923) Chem Met Eng 29:147

    Google Scholar 

  94. Krishna R, Standart GL (2010) A I Ch E J 22(2):383

    Article  Google Scholar 

  95. Higbie R (1935) Trans Am Inst Chem Eng 31(2):365

    CAS  Google Scholar 

  96. Mackay D, Shiu WY (1981) J Phys Chem Ref Data 10(4):1175

    Article  CAS  Google Scholar 

  97. Sotelo JL, Beltran FJ, Benitez FJ, Beltran-Heredia J (1989) Water Res 23(10):1239

    Article  CAS  Google Scholar 

  98. Blauwhoff PMM, Versteeg GF, van Swaaij WPM (1984) Chem Eng Sci 39(2):207

    Article  CAS  Google Scholar 

  99. Stewart PS (2003) J. Bacteriol 185(5):1485

    Article  CAS  Google Scholar 

  100. Richard T Cornell composting files, science and engineering, calculating the oxygen diffusion coefficient in water, http://compost.css.cornell.edu/oxygen/oxygen.diff.water.html, accessed on September 22, 2013

  101. Gong XB, Takagi S, Huang HX, Matsumoto Y (2007) Chem Eng Sci 62(4):1081

    Article  CAS  Google Scholar 

  102. Svishchev IM, Plugatyr AY (2005) J Phys Chem B 109:4123

    Article  CAS  Google Scholar 

  103. Zhang JJ, Oloman CW (2005) J Appl Electrochem 35:945

    Article  CAS  Google Scholar 

  104. Kahlert H, Retter U (1998) J Phys Chem 102:8757

    Article  CAS  Google Scholar 

  105. Nedeltchev S, Jordan U, Schumpe A (2007) Chem Eng Sci 62:6263

    Article  CAS  Google Scholar 

  106. Limtrakul S, Kongto A, Vatanatham T, Ramachandran PA (2010) Chem Eng Sci 65(15):4420

    Article  CAS  Google Scholar 

  107. Marchello JM, Toor HL (1963) Ind Eng Chem 2(1):8

    CAS  Google Scholar 

  108. Toor HL, Marchello JM (1958) A I Ch E J 4(1):97

    Article  CAS  Google Scholar 

  109. Sieck LW, Herron JT, Green DS (2000) Plasma Chem Plasma Process 20:235

    Article  CAS  Google Scholar 

  110. Molina-Cuberos GJ, Lopez-Moreno JJ, Rodrigo R, Lichtenegger H, Schwingenschuh K (2001) Adv Space Res 27(1):1801

    Article  CAS  Google Scholar 

  111. Lindinger W, Albritton DL (1975) J Chem Phys 62:3517

    Article  CAS  Google Scholar 

  112. Shi JJ, Liu DW, Kong MG (2006) Appl Phys Lett 89:081502

    Article  CAS  Google Scholar 

  113. Liu JJ, Kong MG (2011) J Phys D Appl Phys 44(34):345203

    Article  CAS  Google Scholar 

  114. Vroom JM, De Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK, Birmingham JJ, Allison C (1999) Appl Environ Microbiol 65(8):3502

    CAS  Google Scholar 

  115. Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry (Version 3). http://www.henrys-law.org. Accessed in Nov 2008

  116. Perry’s Chemical Engineers’ Handbook, P173

  117. Orazov M, Sakiyama Y, Graves DB (2012) J Phys D Appl Phys 45:445201

    Article  CAS  Google Scholar 

  118. Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P (2007) J Food Sci 72(2):M62

    Article  CAS  Google Scholar 

  119. Perni S, Shama G, Kong MG (2008) J. Food Protect 71(8):1619

    Google Scholar 

  120. Ragni L, Berardinelli A, Vannini L, Montanari C, Sim F, Guerzoni ME, Guarnieri A (2010) J Food Eng 100(1):125

    Article  CAS  Google Scholar 

  121. Noriega W, Shama G, Laca A, Diaz M, Kong MG (2011) Food Microbiol 28(7):1293

    Article  CAS  Google Scholar 

  122. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) New J Phys 11:115020

    Article  CAS  Google Scholar 

  123. Lademann J, Kramer A, Weltmann KD, Hartmann B, Fluhr JW, Hinz P, Hubner G, Lademann O, Ottomann C, Richter H, Alborova A, Humme D, Patzelt A (2009) J. Biomed Optics 14(5):054025

    Article  CAS  Google Scholar 

  124. Lademann J, Ulrich C, Richter H, Kluschke F, Lademann O, Kramer A, Weltmann KD, Lange-Asschenfeldt B (2013) Clin Plasma Med 1:5

    Article  Google Scholar 

  125. Foster KR (2000) IEEE Trans Plasma Sci 28(1):15

    Article  Google Scholar 

  126. Chichel A, Skowronek J, Kubasewska M, Kanikowski M (2007) Rep Pract Radiother 12(5):267

    Article  Google Scholar 

  127. Pennes HH (1948) J Appl Physiol 1:93

    CAS  Google Scholar 

  128. Xu F, Lu TJ, Seffen KA (2008) Acta Mech Sinica 24:1

    Article  Google Scholar 

  129. Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B (2006) IEEE Trans Biomed Eng 53(5):1409

    Article  Google Scholar 

  130. Lee RC (1997) Curr Probl Surg Sep 34(9):677

    Article  CAS  Google Scholar 

  131. Lee RC and Astumian RD (1996) 22(7): 509

  132. Weaver JC, Chizmadzhev Yu A (1996) Bioelectrochem Bioenetics 41(2):135

    Article  CAS  Google Scholar 

  133. Marrink SJ, de Vries AH, Tieleman DP (2009) Biochim Biophys Acta Biomembr 1788(1):149

    Article  CAS  Google Scholar 

  134. Joshi RP, Schoenbach KH (2000) Phys Rev E 62(1):1025

    Article  CAS  Google Scholar 

  135. Vernier PT, Ziegler MJ, Sun Y, Chang W, Gundersen MA, Tieleman DP (2006) J Am Chem Soc 128(9):6288

    Article  CAS  Google Scholar 

  136. Hu Q, Zhang Z, Kong MG, Joshi RP (2013) Phys Rev E 87(3):032704

    Article  CAS  Google Scholar 

  137. Shao Y et al (2006) Phys Chem Chem Phys 8(27):3172

    Article  CAS  Google Scholar 

  138. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) Nature 450:913

    Article  CAS  Google Scholar 

  139. Kamerlin SCL, Warshel A (2009) Proteins Struct Funct Bioinform 78(6):1339

    Google Scholar 

  140. Chang IA, Nguyen UD (2004) Biomed Eng Online 3:27

    Article  Google Scholar 

  141. Kosturski N, Margenov S, Vutov Y (2012) AIP Conf Proc 1497:120

    Article  Google Scholar 

  142. Henriques FC, Moritz AR (1947) Am J Pathol 23:531

    Google Scholar 

  143. Berjano EJ (2006) BioMed Eng OnLine 5:24

    Article  Google Scholar 

  144. Park J, Henins I, Herrmann HW, Selwyn GS (2001) J Appl Phys 89(1):15

    Article  CAS  Google Scholar 

  145. Walsh JL, Zhang YT, Iza F, Kong MG (2008) Appl Phys Lett 93(22):221505

    Article  CAS  Google Scholar 

  146. Yang AJ, Rong MZ, Wang XH, Liu DX, Kong MG (2013) J Phys D Appl Phys 46(41):415201

    Article  CAS  Google Scholar 

  147. Sakiyama Y, Graves DB (2006) J Phys D Appl Phys 39:3644

    Article  CAS  Google Scholar 

  148. Gabriel S, Lau RW, Gabriel C (1996) Phys Med Biol 41:2271

    Article  CAS  Google Scholar 

  149. Diller KR (1994) Ann N Y Acad Sci 720:38

    Article  CAS  Google Scholar 

  150. D’Ambrosio V, Dughiero F (2007) Med Bio Eng Comput 45:459

    Article  Google Scholar 

  151. Kurgan E, Gas P (2011) PREEGLAD ELECKTROTECHINCZNY 87(12b):103

    Google Scholar 

  152. Safety Code 6 Regulation, Limits of human exposure to radio frequency electromagnetic fields in the frequency range from 3 kHz to 300 GHz, Health Canada HC Pub: 091029, 2009

  153. Deng XT, Shi JJ, Kong MG (2006) IEEE Trans Plasma Sci 34(4):1310

    Article  Google Scholar 

  154. Deng XT, Shi JJ, Chen HL, Kong MG (2007) Appl Phys Lett 90(1):013903

    Article  CAS  Google Scholar 

  155. Ellerweg D, Benedikt J, von Keudell A, Knake N, Schulz-von der Gathern V (2010) New J Phys 12(1):013021

    Article  CAS  Google Scholar 

  156. Waskoenig J, Niemi K, Knake N, Graham LM, Reuter S, Schulz-von der Gathern V, Gans T (2010) Plasma Sour Sci Technol 19(4):045018

    Article  CAS  Google Scholar 

  157. O’Connell D, Cox LJ, Hyland WB, McMahon SJ, Reuter S, Graham WG, Gans T, Currell FJ (2011) Appl Phys Lett 98(4):043701

    Article  CAS  Google Scholar 

  158. Lissi EA, Encinas MV, Lemp E, Rubio MA (1993) Chem Rev 93(2):699

    Article  CAS  Google Scholar 

  159. Schweitzer C, Schmidt R (2003) Chem Rev 103(5):1685

    Article  CAS  Google Scholar 

  160. Ionin AA, Kochetov IV, Yuryshev NN (2007) J Phys D Appl Phys 40(2):R25

    Article  CAS  Google Scholar 

  161. Sousa JS, Bauville G, Lacour B, Puech V, Touzeau M, Pitchford LC (2008) Appl Phys Lett 93(10):011502

    Article  CAS  Google Scholar 

  162. Yusupov M, Neyts EC, Simon P, Bergiyorov G, Snoeckx R, van Duin ACT, Bogaerts A (2014) J Phys D Appl Phys 47:025025

    Article  CAS  Google Scholar 

  163. Yusupov M, Bogaert A, Huygh S, Snoeckx R, van Duin ACT, Neyts EC (2013) J Phys Chem C 117:5993

    Article  CAS  Google Scholar 

  164. Fridovich I (1978) Science 201(4):875

    Article  CAS  Google Scholar 

  165. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DR, Wilcox HM, Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD (1996) Nat Genet 13:43

    Article  CAS  Google Scholar 

  166. Yang AJ, Rong MZ, Wang XH, Liu DX, Kong MG (2013) J Phys D Appl Phys 46(41):415201

    Article  CAS  Google Scholar 

  167. Pryor WA (1986) Ann Rev Physiol 48:657

    Article  CAS  Google Scholar 

  168. Behl C, Davis JB, Lesley R, Schubert D (1994) Cell 77(6):817

    Article  CAS  Google Scholar 

  169. Imlay JA (2008) Ann Rev Biochem 77:755

    Article  CAS  Google Scholar 

  170. Janero DR (1990) Free Radic Biol Med 9(6):515

    Article  CAS  Google Scholar 

  171. Gutteridge JMC (1995) Clin Chem 41(12):1819

    CAS  Google Scholar 

  172. Stewart PS, Peyton BM, Drury WJ, Murga R (1993) Appl Environ Microbiol 59(1):327

    CAS  Google Scholar 

  173. Rittmann BE, McCarty PL (1980) Biotechnol Bioeng 22:2343

    Article  CAS  Google Scholar 

  174. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) Science 280:295

    Article  CAS  Google Scholar 

  175. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S (2000) Microbiology 146:2395

    CAS  Google Scholar 

  176. Kong MG, Deng XT, Shi JJ, Shama G, Greenacre E and Buckhurst T, presented at ElectroMed 2005 Symposium, May 15–18, 2005, Portland, Oregon, USA

  177. Xiong ZL, Du TF, Lu XP, Cao YG, Pan Y (2011) Appl Phys Lett 98:221503

    Article  CAS  Google Scholar 

  178. Imlay JA, Linn S (1986) J Bacteriol 166:519

    CAS  Google Scholar 

  179. Otero MC, Nader-Macias ME (2006) Anim Reprod Sci 96:35

    Article  CAS  Google Scholar 

  180. Broadwater WT, Hoehn RC, King PH (1973) Appl Microbiol 26:391

    CAS  Google Scholar 

  181. Pei X, Lu X, Liu J, Liu D, Yang Y, Ostrikov K, Chu PK, Pan Y (2012) J Phys D Appl Phys 45:165205

    Article  CAS  Google Scholar 

  182. Ikawa S, Kitano K, Hamaguchi S (2009) Plasma Process Polym 7(1):33

    Article  CAS  Google Scholar 

  183. Balcon N, Aanesland A, Boswell R (2007) Plasma Sour Sci Technol 16(2):217

    Article  CAS  Google Scholar 

  184. Shi JJ, Zhang J, Qiu G, Walsh JL, Kong MG (2008) Appl Phys Lett 93(4):041502

    Article  CAS  Google Scholar 

  185. Li WP, Zhu MS et al (2006) Burn 32:986

    Article  Google Scholar 

  186. Eden JG, Park S-J, Ostrom NP, McCain ST, Wagner CJ, Vojak BA, Chen J, Liu C, von Allmen P, Zenhausern F, Sadler DJ, Jensen C, Wilcox DL, Ewing JJ (2003) J Phys D Appl Phys 36(23):2869

    Article  CAS  Google Scholar 

  187. Cao Z, Nie Q, Bayliss DL, Walsh JL, Ren CS, Wang DZ, Kong MG (2010) Plasma Sour Sci Technol 19(2):025003

    Article  CAS  Google Scholar 

  188. Graves DB (2012) J Phys D Appl Phys 45(26):263001

    Article  CAS  Google Scholar 

  189. Stamler JS, Singel DJ, Loscalzo J (1992) Science 258(5090):1898

    Article  CAS  Google Scholar 

  190. Richmonds C, Sankaran RM (2008) Appl Phys Lett 93(13):131501

    Article  CAS  Google Scholar 

  191. Li J, Sato M, Ohshima T (2007) Thin Solid Films 515(9):4283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51307134 and 51221005), and Old Dominion University, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. X. Liu or M. G. Kong.

Appendices

Appendix 1

See Table 1.

Table 1 Concentrations and fluxes at different transport nodes at O2/He = 1 %

Appendix 2

See Table 2.

Table 2 Liquid phase chemical reactions

Appendix 3

See Table 3.

Table 3 Diffusion coefficients in liquid phase

Appendix 4

See Table 4.

Table 4 Maximum electric current and exposure time for human body [152]

Appendix 5

See Table 5.

Table 5 Thermal and electrical parameters (at 13.56 MHz) of human skin tissues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Liu, D.X., Liu, Z.C. et al. A Model of Plasma-Biofilm and Plasma-Tissue Interactions at Ambient Pressure. Plasma Chem Plasma Process 34, 403–441 (2014). https://doi.org/10.1007/s11090-014-9545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9545-1

Keywords

Navigation