[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Performance Analysis of RSS-Based Localization in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, localization error of the received signal strength (RSS)-based method in mixed LOS/NLOS conditions is analysed. In contrast to the time of arrival, time-difference of arrival and angle of arrival, RSS measurements are low-cost and ubiquitous in the indoor environment. The localization inaccuracy for the RSS-based method is first computed in the presence of NLOS positive bias using perturbation analysis. Subsequently, root-mean-square localization error is determined using Cramér–Rao lower bound analysis under the range error. Experimental results for mobile phone localization in two different indoor environments are shown to attain theoretical bound asymptotically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin, C. F., Chi, K. H., Hsu, Y. Y., & Liu, C. Y. (2017). Mobile anchor-assisted localization over android. Wireless Networks, 23(8), 2379–2394.

    Article  Google Scholar 

  2. Jaiswal, R. K., & Jaidhar, C. (2017). Location prediction algorithm for a nonlinear vehicular movement in VANET using extended Kalman filter. Wireless Networks, 23(7), 2021–2036.

    Article  Google Scholar 

  3. Zhou, M., Wilford, A., Tian, Z., & Zhang, Q. (2017). Composite peer hand-shake radio map for indoor WLAN localization. IEEE Sensors Letters, 1(1), 1–4.

    Article  Google Scholar 

  4. Jain, N., Verma, S., & Kumar, M. (2017). Adaptive locally linear embedding for node localization in sensor networks. IEEE Sensors Journal, 17(9), 2949–2956.

    Article  Google Scholar 

  5. Chen, H., Wang, G., Wang, Z., So, H. C., & Poor, H. V. (2012). Non-line-of-sight node localization based on semi-definite programming in wireless sensor networks. IEEE Transactions on Wireless Communications, 11(1), 108–116.

    Article  Google Scholar 

  6. Guvenc, I., & Chong, C. C. (2009). A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Communications Surveys and Tutorials, 11(3), 107–124.

    Article  Google Scholar 

  7. Zhang, W., Yin, Q., Chen, H., Gao, F., & Ansari, N. (2013). Distributed angle estimation for localization in wireless sensor networks. IEEE Transactions on Wireless Communications, 12(2), 527–537.

    Article  Google Scholar 

  8. Zhao, J., Xi, W., He, Y., Liu, Y., Li, X. Y., Mo, L., et al. (2013). Localization of wireless sensor networks in the wild: Pursuit of ranging quality. IEEE/ACM Transactions on Networking (TON), 21(1), 311–323.

    Article  Google Scholar 

  9. Jehan, C., & Punithavathani, D. S. (2017). Potential position node placement approach via oppositional gravitational search for fulfill coverage and connectivity in target based wireless sensor networks. Wireless Networks, 23(6), 1875–1888.

    Article  Google Scholar 

  10. Singh, M., & Khilar, P. M. (2017). Mobile beacon based range free localization method for wireless sensor networks. Wireless Networks, 23(4), 1285–1300.

    Article  Google Scholar 

  11. Geng, Y., He, J., & Pahlavan, K. (2013). Modeling the effect of human body on TOA based indoor human tracking. International Journal of Wireless Information Networks, 20(4), 306–317.

    Article  Google Scholar 

  12. Guvenc, I., Chong, C. C., & Watanabe, F. (2007). NLOS identification and mitigation for UWB localization systems. In Wireless communications and networking conference (pp. 1571–1576). IEEE.

  13. Qi, Y., Kobayashi, H., & Suda, H. (2006). Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Wireless Communications, 5(3), 672–681.

    Article  Google Scholar 

  14. Huang, J., & Wan, Q. (2010). The CRLB for WSNs location estimation in NLOS environments. In 2010 international conference on communications, circuits and systems (ICCCAS) (pp. 83–86). IEEE.

  15. Qi, Y., & Kobayashi, H. (2002). Cramer-Rao lower bound for geolocation in non-line-of-sight environment. In 2002 IEEE international conference on acoustics, speech, and signal processing (ICASSP) (Vol. 3, pp. III–2473). IEEE.

  16. Hara, S., Anzai, D., Yabu, T., Lee, K., Derham, T., & Zemek, R. (2013). A perturbation analysis on the performance of TOA and TDOA localization in mixed LOS/NLOS environments. IEEE Transactions on Communications, 61(2), 679–689.

    Article  Google Scholar 

  17. Guvenc, I., Chong, C. C., & Watanabe, F. (2007). Analysis of a linear least-squares localization technique in LOS and NLOS environments. In IEEE 65th vehicular technology conference, 2007. VTC2007-Spring (pp. 1886–1890). IEEE.

  18. Venkatesh, S., & Buehrer, R. (2007). Non-line-of-sight identification in ultra-wideband systems based on received signal statistics. IET Microwaves, Antennas and Propagation, 1(6), 1120–1130.

    Article  Google Scholar 

  19. Chehri, A., Fortier, P., & Tardif, P. M. (2009). UWB-based sensor networks for localization in mining environments. Ad Hoc Networks, 7(5), 987–1000.

    Article  Google Scholar 

  20. Güvenç, I., Chong, C. C., Watanabe, F., & Inamura, H. (2007). NLOS identification and weighted least-squares localization for UWB systems using multipath channel statistics. EURASIP Journal on Advances in Signal Processing, 2008(1), 271984.

    Article  MATH  Google Scholar 

  21. Venkatesh, S., & Buehrer, R. M. (2006). A linear programming approach to NLOS error mitigation in sensor networks. In Proceedings of the 5th international conference on information processing in sensor networks (pp. 301–308). ACM.

  22. Morelli, C., Nicoli, M., Rampa, V., Spagnolini, U., et al. (2007). Hidden Markov models for radio localization in mixed LOS/NLOS conditions. IEEE Transactions on Signal Processing, 55(4), 1525–1542.

    Article  MathSciNet  MATH  Google Scholar 

  23. Steven, M. K. (1993). Fundamentals of statistical signal processing. Englewood Cliffs, NJ: PTR Prentice-Hall.

    MATH  Google Scholar 

  24. Cheung, K. W., So, H. C., Ma, W. K., & Chan, Y. T. (2006). A constrained least squares approach to mobile positioning: Algorithms and optimality. EURASIP Journal on Advances in Signal Processing, 2006(1), 1–23.

    Article  Google Scholar 

  25. Rappaport, T. S., et al. (1996). Wireless communications: Principles and practice (Vol. 2). Englewood Cliffs, NJ: Prentice Hall PTR.

    MATH  Google Scholar 

  26. Song, H. L. (1994). Automatic vehicle location in cellular communications systems. IEEE Transactions on Vehicular Technology, 43(4), 902–908.

    Article  Google Scholar 

  27. Zekavat, R., & Buehrer, R. M. (2011). Handbook of position location: Theory, practice and advances (Vol. 27). New York: Wiley.

    Book  Google Scholar 

  28. Venkatraman, S., Caffery, J., & You, H. R. (2004). A novel TOA location algorithm using LOS range estimation for NLOS environments. IEEE Transactions on Vehicular Technology, 53(5), 1515–1524.

    Article  Google Scholar 

  29. Perez-Ramirez, J., Borah, D., & Voelz, D. (2013). Optimal 3-D landmark placement for vehicle localization using heterogeneous sensors. IEEE Transactions on Vehicular Technology, 62(7), 2987–2999.

    Article  Google Scholar 

  30. Adhikary, R., & Daigle, J. N. (2016). RSS based localization in Rayleigh fading environment. In Wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.

  31. Dogandzic, A., & Amran, P. P. (2004). Signal-strength based localization in wireless fading channels. In Conference record of the thirty-eighth asilomar conference on signals, systems and computers (Vol. 2, pp. 2160–2164). IEEE.

  32. Bialer, O., Raphaeli, D., & Weiss, A. J. (2017). Robust time-of-arrival estimation in multipath channels with OFDM signals. In 2017 25th European signal processing conference (EUSIPCO) (pp. 2724–2728). IEEE.

  33. Zanella, A., & Bardella, A. (2014). RSS-based ranging by multichannel RSS averaging. IEEE Wireless Communications Letters, 3(1), 10–13.

    Article  Google Scholar 

  34. Wang, Z., Liu, H., Xu, S., Bu, X., & An, J. (2014). Multichannel RSS-based device-free localization with wireless sensor network. arXiv preprint arXiv:1403.1170.

  35. Yu, Y., Baltus, P. G., & Van Roermund, A. H. (2011). Integrated 60 GHz RF beamforming in CMOS. New York: Springer.

    Book  MATH  Google Scholar 

  36. Razavi, B. (1998). RF microelectronics (Vol. 2). Englewood cliffs, NJ: Prentice Hall.

    Google Scholar 

  37. Li, P., Scalabrino, N., Fang, Y., Gregori, E., & Chlamtac, I. (2007). Channel interference in IEEE 802.11 b systems. In IEEE global telecommunications conference (pp. 887–891). IEEE.

  38. Mrazovac, B., Bjelica, M. Z., Kukolj, D., Todorovic, B. M., & Samardzija, D. (2012). A human detection method for residential smart energy systems based on ZigBee RSSI changes. IEEE Transactions on Consumer Electronics, 58(3), 819–824.

    Article  Google Scholar 

  39. Guo, Y., Huang, K., Jiang, N., Guo, X., Li, Y., & Wang, G. (2015). An Exponential-Rayleigh model for RSS-based device-free localization and tracking. IEEE Transactions on Mobile Computing, 14(3), 484–494.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the editor and anonymous reviewers for constructive comments and suggestions that helped improve the quality of the manuscript significantly. The work was partially supported by the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S. Performance Analysis of RSS-Based Localization in Wireless Sensor Networks. Wireless Pers Commun 108, 769–783 (2019). https://doi.org/10.1007/s11277-019-06428-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06428-5

Keywords