Abstract
Vehicular ad-hoc network (VANET) is an essential component of the intelligent transportation system, that facilitates the road transportation by giving a prior alert on traffic condition, collision detection warning, automatic parking and cruise control using vehicle to vehicle (V2V) and vehicle to roadside unit (V2R) communication. The accuracy of location prediction of the vehicle is a prime concern in VANET which enhances the application performance such as automatic parking, cooperative driving, routing etc. to give some examples. Generally, in a developed country, vehicle speed varies between 0 and 60 km/h in a city due to traffic rules, driving skills and traffic density. Likewise, the movement of the vehicle with steady speed is highly impractical. Subsequently, the relationship between time and speed to reach the destination is nonlinear. With reference to the previous work on location prediction in VANET, nonlinear movement of the vehicle was not considered. Thus, a location prediction algorithm should be designed by considering nonlinear movement. This paper proposes a location prediction algorithm for a nonlinear vehicular movement using extended Kalman filter (EKF). EKF is more appropriate contrasted with the Kalman filter (KF), as it is designed to work with the nonlinear system. The proposed prediction algorithm performance is measured with the real and model based mobility traces for the city and highway scenarios. Also, EKF based prediction performance is compared with KF based prediction on average Euclidean distance error (AEDE), distance error (DE), root mean square error (RMSE) and velocity error (VE).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 37, 380–392.
Alam, N., Tabatabaei Balaei, A., & Dempster, A. G. (2013). Relative positioning enhancement in vanets: A tight integration approach. IEEE Transactions on Intelligent Transportation Systems, 14(1), 47–55.
Anagnostopoulos, T., Anagnostopoulos, C., & Hadjiefthymiades, S. (2011). An adaptive location prediction model based on fuzzy control. Computer Communications, 34(7), 816–834.
Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. M. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.
Bavdekar, V. A., Deshpande, A. P., & Patwardhan, S. C. (2011). Identification of process and measurement noise covariance for state and parameter estimation using extended kalman filter. Journal of Process Control, 21(4), 585–601.
Boukerche, A. (2008). Algorithms and protocols for wireless mobile ad-hoc networks. London: Wiley.
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding rmse in the literature. Geoscientific Model Development, 7(3), 1247–1250.
Chen, P., Ma, H., Gao, S., & Huang, Y. (2015). Modified extended kalman filtering for tracking with insufficient and intermittent observations. Mathematical Problems in Engineering, 2015, Article ID 981727. doi:10.1155/2015/981727.
Drawil, N., & Basir, O. (2008). Vehicular collaborative technique for location estimate correction. In: IEEE 68th Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE, pp. 1–5.
Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for dtns. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.
Feng, H., Liu, C., Shu, Y., & Yang, O. W. (2015). Location prediction of vehicles in vanets using a Kalman filter. Wireless Personal Communications, 80(2), 543–559.
Feng, Z., Zhu, Y., Zhang, Q., Ni, L. M., & Vasilakos, A. V. (2014). Trac: Truthful auction for location-aware collaborative sensing in mobile crowdsourcing. In: INFOCOM, 2014 Proceedings IEEE, IEEE, pp. 1231–1239.
Fülöp, P., Imre, S., Szabó, S., & Szálka, T. (2009). The accuracy of location prediction algorithms based on markovian mobility models. International Journal of Mobile Computing and Multimedia Communications, 1(2), 1–21.
Haklay, M. M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.
Härri, J., Filali, F., Bonnet, C., & Fiore, M. (2006). Vanetmobisim: Generating realistic mobility patterns for vanets. In: Proceedings of the 3rd international workshop on vehicular ad hoc networks, ACM, New York, NY, USA, VANET ’06, pp. 96–97.
Hu, C., Chen, W., Chen, Y., & Liu, D. (2003). Adaptive Kalman filtering for vehicle navigation. Positioning, 1(04), 0.
Jaiswal, R., & Jaidhar, C. (2015). An applicability of aodv and olsr protocols on ieee 802.11p for city road in vanet. In: Internet of things, smart spaces, and next generation networks and systems, Lecture Notes in Computer Science, Vol. 9247, Springer International Publishing, pp. 286–298.
Jiang, T., Wang, H., & Vasilakos, A. V. (2012). Qoe-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.
Khan, R., Khan, S. U., Khan, S., & Khan, M. U. A. (2014). Localization performance evaluation of extended Kalman filter in wireless sensors network. Procedia Computer Science, 32, 117–124.
Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012a). Codepipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In: INFOCOM, 2012 Proceedings IEEE, IEEE, pp. 100–108.
Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.
Li, X., Mitton, N., & Simplot-Ryl, D. (2011). Mobility prediction based neighborhood discovery in mobile ad hoc networks. In: NETWORKING 2011, Springer, pp. 241–253.
Li, Z., Cai, Zx, Xp, Ren, Ab, Chen, & Zc, Xue. (2012b). Vehicle kinematics modeling and design of vehicle trajectory generator system. Journal of Central South University, 19, 2860–2865.
Liu, J., Li, Y., Wang, H., Jin, D., Su, L., Zeng, L., et al. (2016). Leveraging software-defined networking for security policy enforcement. Information Sciences, 327(C), 288–299.
Liu, K., & Lim, H. B. (2012). Positioning accuracy improvement via distributed location estimate in cooperative vehicular networks. In: 15th international IEEE conference on intelligent transportation systems (ITSC), 2012, IEEE, pp. 1549–1554.
Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 65(1), 244–255.
Mo, Z., Zhu, H., Makki, K., & Pissinou, N. (2008). Mobility-assisted location management for vehicular ad hoc networks. In: IEEE Wireless communications and networking conference, 2008. WCNC 2008. IEEE, pp. 2224–2228.
Perkins, C., & Royer, E. (1999). Ad-hoc on-demand distance vector routing. In: Proceedings of second IEEE workshop on mobile computing systems and applications, 1999. WMCSA ’99. pp. 90–100.
Qureshi, K. N., & Abdullah, A. H. (2014). Localization-based system challenges in vehicular ad hoc networks: Survey. SmartCR, 4(6), 515–528.
Rad, H. J., Van Waterschoot, T., & Leus, G. (2011). Cooperative localization using efficient kalman filtering for mobile wireless sensor networks. In: 19th European, IEEE signal processing conference, 2011. pp. 1984–1988.
Raj, K. & Jaiswal, J. C. D. (2015). Edagf: Estimation and direction aware greedy forwarding for urban scenario in vehicular ad-hoc network. In: UIC-ATC-ScalCom-CBDCom-IoP, 2015 IEEE, pp. 814–821.
Reza, T. A., Barbeau, M., & Alsubaihi, B. (2013). Tracking an on the run vehicle in a metropolitan vanet. In: Intelligent vehicles Symposium (IV), 2013 IEEE, IEEE, pp. 220–227.
Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2014). Review: Vehicular communication ad hoc routing protocols: A survey. Journal of Network and Computer Applications, 40, 363–396.
Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.
Sun, L., Wu, Y., Xu, J., & Xu, Y. (2012). An rsu-assisted localization method in non-gps highway traffic with dead reckoning and v2r communications. In: 2nd international conference on consumer electronics, communications and networks (CECNet), 2012, IEEE, pp. 149–152.
Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.
Welch, G., & Bishop, G. (1995). An introduction to the Kalman filter. Tech. report, Chapel Hill, NC, USA.
Xiao, Y. Y., Zhang, H., & Wang, H. Y. (2007). Location prediction for tracking moving objects based on grey theory. In: Fourth international conference on fuzzy systems and knowledge discovery, 2007. FSKD 2007. IEEE, Vol. 2, pp. 390–394.
Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2015a). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.
Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2015b). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.
Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In: IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS), 2013, pp. 182–190.
Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.
Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained qos multicast routing based on the genetic algorithm for manets. Mathematical and Computer Modelling, 53(11), 2238–2250.
Youssef, M., IBRAHIM, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys Tutorials, 16(1), 92–109.
Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.
Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.
Zhou, J., Cao, Z., Dong, X., Lin, X., & Vasilakos, A. V. (2013). Securing m-healthcare social networks: Challenges, countermeasures and future directions. IEEE Wireless Communications, 20(4), 12–21.
Zhou, J., Cao, Z., Dong, X., Xiong, N., & Vasilakos, A. V. (2015a). 4s: A secure and privacy-preserving key management scheme for cloud-assisted wireless body area network in m-healthcare social networks. Information Sciences, 314, 255–276.
Zhou, J., Dong, X., Cao, Z., & Vasilakos, A. V. (2015b). Secure and privacy preserving protocol for cloud-based vehicular dtns. IEEE Transactions on Information Forensics and Security, 10(6), 1299–1314.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jaiswal, R.K., Jaidhar, C.D. Location prediction algorithm for a nonlinear vehicular movement in VANET using extended Kalman filter. Wireless Netw 23, 2021–2036 (2017). https://doi.org/10.1007/s11276-016-1265-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-016-1265-4