[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with characteristic layers

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present pointwise estimates of the streamline diffusion finite element method (SDFEM) for conforming piecewise linears on Shishkin triangular meshes. The method is applied to a model singularly perturbed convection-diffusion problem with characteristic layers. Using a new variant of artificial crosswind diffusion, we prove that uniformly pointwise error bounds away from the layers are of order almost 7/4 (up to a logarithmic factor). In some cases, the convergence order is almost 15/8. Our analysis depends on discrete Green’s functions and sharp estimates of the diffusion and convection parts in the bilinear form. Finally, numerical experiments support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing 47(3), 277–293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

    Book  Google Scholar 

  4. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems Wiley Online Library. Wiley, New York (2003)

    Book  Google Scholar 

  5. Elman, H.C., Ramage, A.: An analysis of smoothing effects of upwinding strategies for the convection–diffusion equation. SIAM J. Numer Anal. 40(1), 254–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows, volume AMD 34, pp 19–35. American Society of Mechanical Engineers (ASME), New York (1979)

    Google Scholar 

  7. Johnson, C., Schatz, A.H., Wahlbin, L.B.: Crosswind smear and pointwise errors in streamline diffusion finite element methods. Math. Comp. 49(179), 25–38 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kellogg, R.B., Stynes, M.: Corner singularities and boundary layers in a simple convection-diffusion problem. J. Differ. Equ. 213(1), 81–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kellogg, R.B., Stynes, M.: Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem. Appl. Math. Lett. 20(5), 539–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, Q., Yan, N., Zhou, A.: A Rectangle Test for Interpolated Finite Elements. In: Proceedings Systems Science and Systems Engineering (Hong Kong, 1991), pp 217–229 . Great Wall Culture Publishing, Whittier, CA (1991)

    Google Scholar 

  11. Linß, T.: Layer-adapted meshes for reaction-convection-diffusion problems Vol. 1985 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010)

    Book  MATH  Google Scholar 

  12. Linß, T., Stynes, M.: Numerical methods on Shishkin meshes for linear convection–diffusion problems. Comput. Methods Appl. Mech. Engrg. 190(28), 3527–3542 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Linß, T., Stynes, M.: The SDFEM on Shishkin meshes for linear convection–diffusion problems. Numer. Math. 87(3), 457–484 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, X., Zhang, J.: Estimations of the discrete Green’s function of the SDFEM on Shishkin triangular meshes for singularly perturbed problems with characteristic layers. arXiv:1707.02516 (2017)

  15. Niijima, K.: Pointwise error estimates for a streamline diffusion finite element scheme. Numer. Math. 56(7), 707–719 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Roos, H.-G.: Layer-adapted grids for singular perturbation problems. ZAMM Z. Angew. Math. Mech. 78(5), 291–309 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations Vol. 24 of Springer Series in Computational Mathematics, 2nd edn. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

  18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shishkin, G.I.: Grid Approximation of Singularly Perturbed Elliptic and Parabolic Equations (In Russian). Second doctoral thesis, Keldysh Institute, Moscow (1990)

    Google Scholar 

  20. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stynes, M., Tobiska, L.: The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41(5), 1620–1642 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, J., Liu, X.: Analysis of SDFEM on Shishkin triangular meshes and hybrid meshes for problems with characteristic layers. J. Sci. Comput. 68(3), 1299–1316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J., Liu, X.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers. Adv. Comput. Math. 43(4), 759–775 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, J., Liu, X.: Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with exponential layers BIT Numerical Mathematics (2017)

  25. Zhang, J., Liu, X., Yang, M.: Optimal order l 2 error estimate of SDFEM on Shishkin triangular meshes for singularly perturbed convection-diffusion equations. SIAM J. Numer. Anal. 54(4), 2060–2080 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, J., Mei, L.: Pointwise error estimates of the bilinear SDFEM, on Shishkin meshes. Numer. Methods Partial Differential Equations 29(2), 422–440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, J., Mei, L., Chen, Y.: Pointwise estimates of the SDFEM, for convection-diffusion problems with characteristic layers. Appl. Numer. Math. 64, 19–34 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Z.: Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems. Math. Comp. 72(243), 1147–1177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, G.: How accurate is the streamline diffusion finite element method. Math. Comp. 66(217), 31–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank two unknown referees for some perceptive comments that led them to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Additional information

This research was partly supported by NSF of China (11601251), Shandong Provincial Natural Science Foundation, China (ZR2016AM13) and A Project of Shandong Province Higher Educational Science and Technology Program (J16LI10, J17KA169).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, J. Pointwise estimates of SDFEM on Shishkin triangular meshes for problems with characteristic layers. Numer Algor 78, 465–483 (2018). https://doi.org/10.1007/s11075-017-0384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0384-z

Keywords

Mathematics Subject Classification (2010)

Navigation