Abstract
The usual Bramble-Hilbert theory is extended for proving more refined estimates of the interpolation error. For a large class of finite elements, it is shown that one can derive benefit from the presence of small and even large angles of the elements. For bilinear shape functions on rectangular grids it is proved that interpolation and finite element approximation error coincide. As an example, we consider the finite element approximation for problems on domains containing edges.
Zusammenfassung
Die bekannte Bramble-Hilbert Theorie wird erweitert, um verbesserte Abschätzungen für den Interpolationsfehler zu beweisen. Für eine große Klasse finiter Elemente läßt sich zeigen, daß man mit Dreiecken mit kleinem oder sogar großem Winkel vorteilhafter interpolieren kann. Für bilineare Ansatzfunktionen auf rechteckigem Gitter wird bewiesen, daß der Interpolationsfehler mit dem Approximationsfehler übereinstimmt. Als Anwendungsbeispiel wird die Finite Elemente Approximation von Problemen auf Gebieten mit Kanten betrachtet.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adams, R. A.: Sobolev spaces. New York: Academic Press 1975.
Apel, Th.: Finite-Elemente-Methoden über lokal verfeinerten Netzen für elliptische Probleme in Gebieten mit Kanten. Thesis, University of Technology Chemnitz, 1991.
Arbenz, P.: Computable finite element error bounds for poissons equation. IMA J. Number. Anal.29, 475–479 (1982).
Arnold, D. N., Breezi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo21, 337–344 (1984).
Barnhill, R. E., Brown, J. H., Mitchell, A. R.: A comparison of finite element error bounds for Poissons equation. IMA J. Numer. Anal.28, 95–103 (1981).
Bramble, J. H., Hilbert, S. R.: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, SIAM. J. Numer. Anal.7, 112–124 (1970).
Bramble, J. H., Hilbert, S. R.: Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math.16, 362–369 (1971).
Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978.
Ciarlet, P. G., Wagschal, C.: Multipoint Taylor formulas and applications to the finite element method. Numer. Math.17, 84–100 (1971).
Clement, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer.R-2, 77–84 (1975).
Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numer.R-3, 33–76 (1973).
Dobrowolski, M.: Wie groß ist der Diskretisierungsfehler beim finite Elemente Verfahren? ZAMM70, T667-T668 (1990).
Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp.34, 441–463 (1980).
Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Grundlehren der math. Wiss. 224, Springer: Berlin, 1977.
Gout, J. L.: Estimation de l'erreur d'interpolation d'Hermite dansℝ n. Numer. Math.28, 407–429 (1977).
Hughes, T. J. R., Franca, L. P., Balestra, M.: A new finite element formulation for computationable fluid mechanics. Comp. Appl. Mech. Eng.59, 85–99 (1986).
Jamet, P.: Estimation de l'erreur d'interpolation dans un domaine variable et application aux éléments finis quadrilatéraux dégénérés, in: Méthodes Numériques en Mathématiques Appliquées, 55–100, Presses de l'Université de Montréal 1976.
Křížek, M.: On semiregular families of triagulations and linear interpolation, to eppear in Proc. EQUADIFF VII, 1989.
Kufner, A., Sändig, A.-M.: Some applications of weighted sobolev spaces. Leipzig: BSB B.G. Teubner Verlassgesellschaft, 1987.
Nikolski, S. M.: Inequalities for entire functions of exponential type and their application to the theory of differentiable functions of several variables, Trudy Mat. Inst. Steklov38, 244–278 (1951). [English transl.: Amer. Math. Soc. Transl. (2),80, 1–38 (1969)].
Oganesjan, L. A., Rukhovets, L. A.: Variational difference methods for solving elliptic equations (Russian). Isdatelstvo Akad. Nauk Arm. SSR, Jerevan 1979.
Scott, L. R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.54, 483–493 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Apel, T., Dobrowolski, M. Anisotropic interpolation with applications to the finite element method. Computing 47, 277–293 (1992). https://doi.org/10.1007/BF02320197
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02320197