[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A vertebrate globin expressed in the brain

Abstract

Haemoglobins and myoglobins constitute related protein families that function in oxygen transport and storage in humans and other vertebrates1,2. Here we report the identification of a third globin type in man and mouse. This protein is predominantly expressed in the brain, and therefore we have called it neuroglobin. Mouse neuroglobin is a monomer with a high oxygen affinity (half saturation pressure, P50 ≈ 2 torr). Analogous to myoglobin, neuroglobin may increase the availability of oxygen to brain tissue. The human neuroglobin gene (NGB), located on chromosome 14q24, has a unique exon–intron structure. Neuroglobin represents a distinct protein family that diverged early in metazoan evolution, probably before the Protostomia/Deuterostomia split.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of human and mouse neuroglobin (HsaNGB and MmuNgb) with myglobins (HsaMB, accession number M14603; MmuMb, P04247) and haemoglobins α and β (HsaHBA, J00153; HsaHBB, M36640; MmuHba, A45964; MmuHbb, P02088).
Figure 2: Neuroglobin expression in adult mouse brain (sagittal section) was studied by in situ hybridization using a digoxigenin-labelled oligonucleotide probe.
Figure 3: Neighbour-joining tree of selected globins.

Similar content being viewed by others

References

  1. Dickerson, R. E. & Geis, I. Hemoglobin: Structure, function, evolution, and pathology (Benjamin/Cummings, Menlo Park, California, 1983).

    Google Scholar 

  2. Stryer, L. Biochemistry (Freeman, New York, 1995).

    Google Scholar 

  3. Hardison, R. C. A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl Acad. Sci. USA 93, 5675– 5679 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Gödecke, A. et al. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc. Natl Acad. Sci. USA 96, 10495–10500 (1999).

    Article  ADS  Google Scholar 

  5. Boguski, M. S., Lowe, T. M. & Tolstoshev, C. M. dbEST–database for “expressed sequence tags”. Nature Genet. 4, 332– 333 (1993).

    Article  CAS  Google Scholar 

  6. Makalowski, W., Zhang, J. & Boguski, M. S. Comparative analysis of 1196 orthologous mouse and human full length mRNA and protein sequences. Genome Res. 6, 846–857 (1996).

    Article  CAS  Google Scholar 

  7. Waterman, M. R. Spectral characterization of human hemoglobin and its derivatives. Methods Enzymol. 52, 456–463 (1978).

    Article  CAS  Google Scholar 

  8. Strittmatter, P. & Burch, H. B. The heme protein in ganglia of Spisula solidissima. Biochim. Biophys. Acta 78, 562–563 ( 1963).

    Article  CAS  Google Scholar 

  9. Dixon, B. & Pohajdak, B. Did the ancestral globin gene of plants and animals contain only two introns? Trends Biochem. Sci. 17, 486–488 ( 1992).

    Article  CAS  Google Scholar 

  10. Go, M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291, 90–92 ( 1981).

    Article  ADS  CAS  Google Scholar 

  11. Hankeln, T., Friedl, H., Ebersberger, I., Martin, J. & Schmidt, E. R. A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205, 151–160 ( 1997).

    Article  CAS  Google Scholar 

  12. Logsdon, J. M., Stoltzfus, A. & Doolittle, W. F. Molecular evolution: recent cases of spliceosomal intron gain? Curr. Biol. 8, R560– R563 (1998).

    Article  CAS  Google Scholar 

  13. Goodman, M., Moore, G. W. & Matsuda, G. Darwinian evolution in the genealogy of haemoglobin. Nature 253, 603–608 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Dewilde, S. et al. Globin and globin gene structure of the nerve myoglobin of Aphrodite aculeata. J. Biol. Chem. 271, 19865–19870 (1996).

    Article  CAS  Google Scholar 

  15. Simons, P. C. & Satterlee, J. D. cDNA cloning and predicted amino acid sequence of Glycera dibranchiata monomer hemoglobin IV. Biochemistry 28, 8525– 8530 (1989).

    Article  CAS  Google Scholar 

  16. Zafar, R. S. et al. The cDNA sequences encoding two components of the polymeric fraction of the intracellular hemoglobin of Glycera dibranchiata. J. Biol. Chem. 265, 21843–21851 (1990).

    CAS  PubMed  Google Scholar 

  17. Zafar, R. S., Chow, L. H., Stern, M. S., Vinogradov, S. N. & Walz, D. A. The heterogeneity of the polymeric intracellular hemoglobin of Glycera dibranchiata and the cDNA-derived amino acid sequence of one component. Biochim. Biophys. Acta 1041, 117–122 (1990).

    Article  CAS  Google Scholar 

  18. Wittenberg, B. A., Briehl, R. W. & Wittenberg, J. B. Haemoglobins of invertebrate tissues - nerve haemoglobins of Aphrodite, Aplysia, and Halosydna. Biochem. J. 96, 363–371 ( 1965).

    Article  CAS  Google Scholar 

  19. Wittenberg, J. B. Functions of cytoplasmatic hemoglobins and myohemerythrin. Adv. Comp. Environ. Physiol. 13, 60–85 (1992).

    Google Scholar 

  20. Vandergon, T. L., Riggs, C. K., Gorr, T. A., Colacino, J. M. & Riggs, A. F. The mini-hemoglobins in neural and body wall tissue of the nemertean worm, Cerebratulus lacteus. J. Biol. Chem. 273, 16998–17011 (1998).

    Article  CAS  Google Scholar 

  21. Kraus, D. W. & Colacino, J. M. Extended oxygen delivery from the nerve hemoglobin of Tellina alternata (Bivalvia). Science 232, 90–92 ( 1986).

    Article  ADS  CAS  Google Scholar 

  22. Schmidt, R. F. & Thews, G. Physiologie des Menschen (Springer, Berlin, Heidelberg, New York, 1997 ).

    Book  Google Scholar 

  23. Feinberg, A. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  24. Rentrop, M., Knapp, B., Winter, H. & Schweizer, J. Aminoacylsilane-coated glass slides as support for in situ hybridisation of keratin cDNAs to frozen tissue sections under varying fixation and pretreatment conditions. Histochem. J. 18, 271–276 (1986).

    Article  CAS  Google Scholar 

  25. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  26. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-82 (1997).

    Article  Google Scholar 

  27. Burmester, T. & Hankeln, T. A globin gene of Drosophila melanogaster . Mol. Biol. Evol. 16, 1809– 1811 (1999).

    Article  CAS  Google Scholar 

  28. Felsenstein, J. PHYLIP (Phylogeny Inference Package) Version 3.5c (Dept Genetics, Univ. Washington, Seattle, 1993).

Download references

Acknowledgements

We wish to thank R. Gebhardt and N. Hellmann for their help with the oxygen-binding studies; G. Ungerechts for his assistance in the cloning; E. Jaenicke for running the FPLC; L. Moens and S. Dewilde for sharing experimental protocols and for discussions; and H. Decker, E. R. Schmidt and J. Markl for excellent working facilities, continuous support and valuable suggestions. This work is supported by the Deutsche Forschungsgemeinschaft (DFG) and the Naturwissenschaftlich-Medizinisches Forschungszentrum (NMFZ) Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Burmester.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burmester, T., Weich, B., Reinhardt, S. et al. A vertebrate globin expressed in the brain. Nature 407, 520–523 (2000). https://doi.org/10.1038/35035093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35035093

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing