[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Shear mechanical behavior of model materials samples by experimental triaxial tests: case study of 4 mm diameter glass beads

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper aims at studying the shear behavior of glass beads samples through experimental triaxial tests as regards the case of 4 mm diameter glass beads. Repeated tests are systematically carried out, together with the evaluation of the repeatability. Study of numerous experimental conditions is performed: compactness state (high/medium density), variable effective confining pressure (\(p'_0\) = 50–200 kPa), saturation state (saturated/dry) and surface state (rough/smooth). Specifically, the influence of these parameters on the stick-slip phenomenon is reported. Equivalent study of perturbation on the mechanical response by larger size spherical inclusions is also performed. The experimental findings received from drained triaxial tests classically throw light on the shear behavior of granular media directly dependent on compactness, in addition to the application of effective confining pressure, with a more dilatant behavior with the decrease of the confining pressure. The Rowe’s law is truly verified in experiments. The modification of the surface state of glass beads results into observably different responses on both the deviatoric and the volumetric aspects. It is quite evident that the intensity of stick-slip phenomenon experienced increase with the application of confining pressure and depends on the surface roughness. No noteworthy impact on the mechanical response is taken into observation between the states of entire saturation and dry. Calculation of friction and dilatancy angles are made as well as reported in respect of different experimental configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

E :

Young’s Modulus

\(e=\frac{V_v}{V_s}\) :

Void ratio

\(M'\) :

Effective stress ratio

m :

Mass of particle

\(p'_0\) :

Effective confining pressure

q :

Deviatoric stress

\(u_{c}\) :

Pore pressure

w :

Angular velocities of particle

\(\rho \) :

Density

\(\nu \) :

Poisson’s ratio

\(\sigma _{1}\) :

Axial stress

\(\sigma _{2,3}\) :

Lateral stress

\(\varepsilon _r\) :

Shear strain rate

\(\varepsilon _v\) :

Volumetric strain rate

\(\alpha \) :

Friction angle

\(\phi _c\) :

Characteristic angle

\(\psi \) :

Dilatancy angle

References

  1. Zhou, W., Kun, X., Ma, G., Yang, L., Chang, X.: Effects of particle size ratio on the macro- and microscopic behaviors of binary mixtures at the maximum packing efficiency state. Granular Matter 18, 81 (2016)

    Article  ADS  Google Scholar 

  2. Minh, N.H., Cheng, Y.P., Thornton, C.: Strong force networks in granular mixtures. Granular Matter 16, 69–78 (2014)

    Article  Google Scholar 

  3. Ueda, T., Matsushima, T., Yamada, Y.: Effect of particle size ratio and volume fraction on shear strength of binary granular mixture. Granular Matter 13, 731 (2011)

    Article  Google Scholar 

  4. Hsiao, D.H., AnhPhan, V.T., YiTingHsieh, H.-Y.K.: Engineering behavior and correlated parameters from obtained results of sand silt mixtures. Soil Dyn. Earthq. Eng. 77, 137–151 (2015)

    Article  Google Scholar 

  5. Tang, H., Zhang, X., Ji, S.: Discrete element analysis for shear band modes of granular materials in triaxial tests. Part. Sci. Technol Int. J. 35, 277–290 (2016)

    Article  Google Scholar 

  6. Gu, X.Q., Huang, M.S., Qian, J.G.: Discrete element modeling of shear band in granular materials. Theoret. Appl. Fract. Mech. 72, 37–49 (2014)

    Article  Google Scholar 

  7. Kozichi, J., Tejchman, J., Muhlhaus, H.B.: Discrete simulations of a triaxial compression test for sand by dem. Int. J. Numer. Anal. Geomech. 38, 1923–1952 (2014)

    Article  Google Scholar 

  8. Holtz, R.D., Kovacs, W.D.: Introduction a la geotechnique. Ed. de l’Ecole polytechnique de Montreal (1991)

  9. Ittershagen, T., Schwedes, J., Kwade, A.: A new powder tester to investigate the anisotropic consolidation behaviour. Powder Technol. 211, 85–89 (2011)

    Article  Google Scholar 

  10. Ittershagen, T., Kwade, A.: Measurement of anisotropic consolidation behavior. Part. Sci. Technol. 29, 79–88 (2011)

    Article  Google Scholar 

  11. Ittershagen, T., Morgeneyer, M., Schwedes, J., Kwade, A.: Anisotropic behaviour of bulk solids and its effect on silo design. Powder Technol. 247, 260–264 (2013)

    Article  Google Scholar 

  12. Kai, W., Pizette, P., Becquart, F., Remond, S., Abriak, N.E., Weiya, X., Liu, S.: Experimental and numerical study of cylindrical triaxial test on mono-sized glass beads under quasi-static loading condition. Adv. Powder Technol. 28, 155–166 (2017)

    Article  Google Scholar 

  13. Radjai, F., Azema, E.: Shear strength of granular materials. Eur. J. Environ. Civil Eng. 13(2), 203–218 (2009)

    Article  Google Scholar 

  14. Higo, Y., Oka, F., Sato, T., Matsushima, Y., Kimoto, S.: Investigation of localized deformation in partially saturated sand under triaxial compression using micromicro x-ray ct with digital image correlation. Soils and Foundations (2013)

  15. Kodaka, T., Cui, Y., Lee, K.T., Kobayashi, Y., Wu, Y.: Evaluation of strength coefficients of sandy levee soils under various triaxial test conditions. Jpn Geotech Soc Spec. Publ. 2(9), 391–396 (2016)

  16. Cheng, Y.P., Bolton, M.D., Nakata, Y.: Crushing and plastic deformation of soils simulated using dem. Geotechnique 54(2), 131–142 (2004)

    Article  Google Scholar 

  17. Manounou, A.K., Remond, S.: Discrete element modeling of the microstructure of fine particle agglomerates in sheared dilute suspension. Phys. A 412(10), 66–83 (2014)

    Article  Google Scholar 

  18. Fazekas, S.: Distinct Element Simulations of Granular Materials. PhD thesis, Budapest University of Technology and Economics (2007)

  19. Becquart, F.: Premiere approche du comportement mecanique d’un milieu granulaire issu d’un machefer d’incineration d’ordre menageres: valorisation en technique routiere. PhD thesis, Sciences et Technologies de Lille (2007)

  20. Remond, S.: Dem simulation of small particles clogging in the packing of large beads. Phys. A 389, 4485–4496 (2010)

    Article  Google Scholar 

  21. Pizette, P., Martin, C.L., Delette, G., Sans, F., Geneves, T.: Green strength of binder-free ceramics. J. Eur. Ceram. Soc. 33(5), 975–984 (2013)

    Article  Google Scholar 

  22. Becquart, F., Bernard, F., Abriak, N.-E., Zentar, R.: Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction. Waste Manage. 29(4), 1320–1329 (2009)

    Article  Google Scholar 

  23. Chen, X., Zhang, J., Li, Z.: Shear behaviour of a geogrid-reinforced coarse-grained soil based on large-scale triaxial tests. Geotext. Geomembr. 42(4), 312–328 (2014)

    Article  Google Scholar 

  24. Kim, D., Ha, S.: Effects of particle size on the shear behavior of coarse grained soils reinforced with geogrid. Materials 7(2), 963–979 (2014)

    Article  ADS  Google Scholar 

  25. Feise, H.J.: A review of induced anisotropy and steady-state flow in powders. Powder Technol. 98, 191–200 (1998)

    Article  Google Scholar 

  26. Schwedes, J.: Consolidation and ow of cohesive bulk solids. Chem. Eng. Sci. 57, 287–294 (2002)

    Article  Google Scholar 

  27. Schwedes, J.: Review on testers for measuring flow properties of bulk solids. Granular Matter 5, 1–43 (2003)

    Article  ADS  Google Scholar 

  28. Kwade, A., Schwedes, J.: Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills. Powder Technol. 122, 109–121 (2002)

    Article  Google Scholar 

  29. Morgeneyer, M., Brendel, L., Schwedes, J.: Compaction of bidisperse cohesive powders. Granular Matter 10, 295–299 (2008)

    Article  MATH  Google Scholar 

  30. Abriak, N.-E., Caron, J.-F.: Experimental study of shear in granular media. Adv. Powder Technol. 17, 297–318 (2006)

    Article  Google Scholar 

  31. Cui, L.: Developing a Virtual Test Environment for Granular Materials Using Discrete Element Modelling. Phd thesis (2006)

  32. Dondi, G., Simone, A., Vignali, V., Manganelli, G.: Numerical and experimental study of granular mixes for asphalts. Powder Technol. 232, 31–40 (2012)

    Article  Google Scholar 

  33. Hoang, M. T.: Frottement saccade dans les materiaux granulaires modeles. Thesis (2011)

  34. Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  35. Olivari, G.: Contribution a l’etude des limites de fatigue des milieux pulverulents. PhD thesis, University Scientifique et Medicale de Grenoble (1973)

  36. Dai, B., Yang, J., Zhou, C., Luo, X.: Dem investigation on the effect of sample preparation on the shear behavior of granular soil. Particuology 25(2), 111–121 (2016)

    Article  Google Scholar 

  37. Doanh, T., Hoang, M.T., Roux, J.N., Dequeker, C.: Stickslip behaviour of model granular materials in drained triaxial compression. Granular Matter 15, 1–23 (2013)

    Article  Google Scholar 

  38. Leoni, F., Baldassarri, A., Dalton, F., Petri, A., Pontuale, G., Zapperi, S.: Friction memory in the stickslip of a sheared granular bed. J. Non Crystal. Solids 357(2), 749–753 (2011)

    Article  ADS  Google Scholar 

  39. Ozbay, A., Cabalar, A.F.: Effects of triaxial confining pressure and strain rate on stick-slip behavior of a dry granular material. Granular Matter 18, 60 (2016)

    Article  Google Scholar 

  40. Leeman, John, Scuderi, Marco Maria, Marone, Chris, Saffer, Demian: Stiffness evolution of granular layers and the origin of repetitive, slow, stick-slip frictional sliding. Granular Matter (2015)

  41. Leeman, J.R., Scuderi, M.M., Marone, C., Saffer, D.M., Shinbrot, T.: On the origin and evolution of electrical signals during frictional stick slip in sheared granularmaterial. J. Geophys. Res. Solid Earth 119, 4253–4268 (2013)

    Article  ADS  Google Scholar 

  42. Cui, D., Wei, W., Xiang, W., Doanh, T., Chen, Q., Wang, S., Liu, Q., Wang, J.: Stick-slip behaviours of dry glass beads in triaxial compression. Granular Matter 19, 1 (2017)

    Article  Google Scholar 

  43. Adjemian, F., Evesque, P.: Experimental study of stick-slip behaviour. Int. J. Numer. Anal. Geomech. 28, 501–530 (2004)

    Article  Google Scholar 

  44. Adjemian, F.: Stick-slip et transition de broutage dans les essais triaxiaux sur billes de verre. PhD thesis, Ecole Centrale Paris (2003)

  45. Alshibli, K.A., Roussel, L.E.: Experimental investigation of slipstick behaviour in granular materials. Int. J. Numer. Anal. Methods Geomech 30(14), 1391–1407 (2006)

    Article  Google Scholar 

  46. Anthony, J.L., Marone, C.: Influence of particle characteristics on granular friction. J. Geophys. Res. 110(B08409), 1–14 (2005)

Download references

Acknowledgements

We gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China Nos. 51608112, 51578146, the National Key Research and Development Program of China No. 2016YFC0800201, and by the Fundamental Research Funds for the Central Universities No. 2242016R20005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Abriak, N., Becquart, F. et al. Shear mechanical behavior of model materials samples by experimental triaxial tests: case study of 4 mm diameter glass beads. Granular Matter 19, 65 (2017). https://doi.org/10.1007/s10035-017-0753-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0753-2

Keywords