[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Structure of Sheared Cohesive Granular Bulk

  • Chapter
  • First Online:
Particles in Contact

Abstract

The particle-particle interactions on micro scale determine the macroscopic flow behaviour of bulk solids as in shear testers and in industrial facilities. However, although the flow behaviour can be measured on macro scale and bulk solid facilities as silos can be designed based on reliable engineering knowledge, the microscopic physics causing the wide fluctuation in flow properties of the different bulk solids is still not deeply understood. Therefore, the motion of individual particles in shear testers was determined experimentally as well as by discrete element method (DEM) simulations. The experimental detection of the particle motion was achieved by an own-built micro torsional shear tester which can be placed into a X-ray tomography device (µCT) and a customized statistical analysis method to extract the individual trajectories of almost all particles even at large angle increments of up to 5° between the single tomographic measurements. The two bulk solids, borosilicate glass beads and potassium chloride, with particle sizes in the range of 10–100 µm show very different contact behaviour, on one side viscoelastic with constant adhesion force and on the other side elastoplastic with time dependent adhesion. By a careful calibration of the DEM contact model parameters using among others shear and nanoindentation tests the microscopic behaviour of the two different model materials could be simulated successfully to predict the shear bands and to determine the macroscopic flow properties. Moreover, a theory for the rate dependent rheology of granular materials showing time consolidation has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antypov, D., Elliott, J.A.: On an analytical solution for the damped Hertzian spring. Europhys. Lett. 94, 50004 (2011)

    Article  Google Scholar 

  2. Brilliantov, N.V., Spahn, F., Hertzsch, J.M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53, 5382 (1996)

    Article  CAS  Google Scholar 

  3. Campbell, C.S.: Stress-controlled elastic granular shear flows. J. Fluid Mech. 539, 273 (2005)

    Article  Google Scholar 

  4. Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298 (1996)

    Article  CAS  Google Scholar 

  5. Cuccovillo, T., Coop, M.R.: On the mechanics of structured sands. Géotechnique 49, 741 (1999)

    Article  Google Scholar 

  6. Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 21309 (2005)

    Article  Google Scholar 

  7. Estrada, N., Azéma, E., Radjaï, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84, 11306 (2011)

    Article  Google Scholar 

  8. Fenistein, D., van de Meent, J.W., van Hecke, M.: Universal and wide shear zones in granular bulk flow. Phys. Rev. Lett. 92, 094301 (2004)

    Article  Google Scholar 

  9. Gourlay, C.M., Dahle, A.K.: Dilatant shear bands in solidifying metals. Nature 445, 70 (2007)

    Article  CAS  Google Scholar 

  10. Guo, P.: Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech. 7, 41 (2012)

    Article  Google Scholar 

  11. Handl, L., Torbahn, L., Spettl, A., Zetzener, H., Schmidt, V., Kwade, A.: Microstructural changes, particle tracking and shear localization of fine glass powders. In: Proceedings of the International Congress on Particle Technology, Nürnberg, paper-ID 2.29 (2016)

    Google Scholar 

  12. Handl, L., Torbahn, L., Spettl, A., Schmidt, V., Kwade, A.: Structural analysis and tracking of micron-sized glass particles during shear deformation: a study based on time-resolved tomographic data. Adv. Powder Technol. 28, 1920 (2017)

    Article  Google Scholar 

  13. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10, 235 (2008)

    Article  Google Scholar 

  14. MiDi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341 (2004)

    Article  CAS  Google Scholar 

  15. Moosavi, R., Shaebani, M.R., Maleki, M., Török, J., Wolf, D.E., Losert, W.: Coexistence and transition between shear zones in slow granular flows. Phys. Rev. Lett. 111, 148301 (2013)

    Article  Google Scholar 

  16. Nemat-Nasser, S., Okada, N.: Radiographic and microscopic observation of shear bands in granular materials. Géotechnique 51, 753 (2001)

    Article  Google Scholar 

  17. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931)

    Article  CAS  Google Scholar 

  18. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265 (1931)

    Article  CAS  Google Scholar 

  19. Ries, A., Brendel, L., Wolf, D.E.: Shearrate diffusion and constitutive relations during transients in simple shear. Comput. Part. Mech. 3, 303 (2016)

    Article  Google Scholar 

  20. Ries, A., Brendel, L., Wolf, D.E.: The cooperativity length in simple shear of dry granular media. Comput. Part. Mech. 4, 379 (2017)

    Article  Google Scholar 

  21. Rognon, P.G., Roux, J.-N., Naaim, M., Chevoir, F.: Dense flows of cohesive granular materials. J. Fluid Mech. 596, 21 (2008)

    Article  CAS  Google Scholar 

  22. Rognon, P.G., Miller, T., Metzger, B., Einav, I.: Long-range wall perturbations in dense granular flows. J. Fluid Mech. 764, 171 (2015)

    Article  Google Scholar 

  23. Rothenburg, L., Kruyt, N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763 (2004)

    Article  Google Scholar 

  24. Schwedes, J.: Review on testers for measuring flow properties of bulk solids. Granul. Matter 5, 1 (2003)

    Article  Google Scholar 

  25. Schulze, D.: Pulver und Schüttgüter. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  26. Shojaaee, Z., Roux, J.-N., Chevoir, F., Wolf, D.E.: Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region. Phys. Rev. E 86, 11301 (2012)

    Article  Google Scholar 

  27. Shojaaee, Z., Brendel, L., Török, J., Wolf, D.E.: Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction. Phys. Rev. E 86, 11302 (2012)

    Article  Google Scholar 

  28. Soddemann, T., Dünweg, B., Kremer, K.: Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68, 046702 (2003)

    Article  Google Scholar 

  29. Stegmann, T., Török, J., Brendel, L., Wolf, D.E.: Minimal dissipation theory and shear bands in biaxial tests. Granul. Matter 13, 565 (2011)

    Article  Google Scholar 

  30. Strege, S., Weuster, A., Zetzener, H., Brendel, L., Kwade, A., Wolf, D.E.: Approach to structural anisotropy in compacted cohesive powder. Granul. Matter 16, 401 (2014)

    Article  Google Scholar 

  31. Strege, S.: Röntgenmikrotomographische Analyse der Verdichtung und Scherung feiner und kohäsiver Pulver. Ph.D. Thesis, TU Braunschweig (2014). ISBN 978-3868446647

    Google Scholar 

  32. Thornton, C., Cummins, S.J., Cleary, P.W.: On elastic-plastic normal contact force models, with and without adhesion. Powder Technol. 315, 339 (2017)

    Article  CAS  Google Scholar 

  33. Thornton, C., Ning, Z.M.: A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99, 154 (1998)

    Article  CAS  Google Scholar 

  34. Tighe, B.P.: Critical viscoelastic response in jammed solids. arXiv:1205.2960 (2012)

  35. Tomas, J.: The consolidation of particulate solids—microprocesses of caking and kinetic models. Chem. Ing. Tech. 69, 455 (1997)

    Article  Google Scholar 

  36. Tomas, J.: Adhesion of ultrafine particles—a micromechanical approach. Chem. Eng. Sci. 62, 1997 (2007)

    Article  CAS  Google Scholar 

  37. Torbahn, L., Weuster, A., Handl, L., Schmidt, V., Kwade, A., Wolf, D.E.: Mesostructural investigation of micron-sized glass particles during shear deformation—an experimental approach vs. DEM simualtion. In: EPJ Web of Conferences, vol. 140, p. 03027 (2017)

    Article  Google Scholar 

  38. Unger, T., Török, J., Kertész, J., Wolf, D.E.: Shear band formation in granular media as a variational problem. Phys. Rev. Lett. 92, 214301 (2004)

    Article  CAS  Google Scholar 

  39. Wenzl, J., Seto, R., Roth, M., Butt, H.-J., Auernhammer, G.K.: Measurement of rotation of individual spherical particles in cohesive granulates. Granul. Matter 15, 391 (2013)

    Article  Google Scholar 

  40. Weuster, A., Brendel, L., Wolf, D.E.: Simulation of sheared, caking powder. In: AIP Conference Proceedings, vol. 1542, p. 515 (2013)

    Google Scholar 

  41. Weuster, A., Strege, S., Brendel, L., Zetzener, H., Wolf, D.E., Kwade, A.: Shear flow of cohesive powders with contact crystallization: experiment, model and calibration. Granul. Matter 17, 271 (2015)

    Article  CAS  Google Scholar 

  42. Weuster, A.: Planare Scherung kohäsiver und zeitverfestigender granularer Materie mit der Diskrete-Elemente-Methode. Ph.D. thesis, Universität Duisburg-Essen (2017). https://duepublico2.uni-due.de/receive/duepublico_mods_00044560

  43. Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich E. Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brendel, L. et al. (2019). Structure of Sheared Cohesive Granular Bulk. In: Antonyuk, S. (eds) Particles in Contact. Springer, Cham. https://doi.org/10.1007/978-3-030-15899-6_20

Download citation

Publish with us

Policies and ethics