[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Innovative AI techniques for photorealistic 3D clothed human reconstruction from monocular images or videos: a survey

  • Review
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The reconstruction of high-quality 3D clothed humans from monocular images or videos has gained popularity in recent years due to its significant practical applications. While several surveys have addressed the reconstruction of full-body parametric human models from images or videos, this survey specifically delves into the challenges and methodologies of reconstructing 3D clothed humans. It covers both pose-dependent and dynamic approaches to clothed human reconstruction. Regarding pose-dependent clothed human reconstruction from monocular images, we investigate methodologies that employ regression models trained on high-quality 3D scans to estimate human geometry with clothing. Additionally, we explore research leveraging texture priors within large-scale diffusion models to enhance the inference of human appearance in occluded or unseen areas. In terms of dynamic clothed human reconstruction from monocular and sparse multi-view videos, we analyze human modeling techniques utilizing neural radiance fields and 3D Gaussian representations, which employ deformation fields to capture human movements across frames. Furthermore, we provide an overview of the datasets and commonly used quantitative evaluation metrics in these studies. Finally, we conclude by discussing open issues and proposing future research directions in the realistic reconstruction of clothed humans, emphasizing areas that warrant additional investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Salagean, A., Crellin, E., Parsons, M., Cosker, D., Fraser, D.S.: Meeting your virtual twin: effects of photorealism and personalization on embodiment, self-identification and perception of self-avatars in virtual reality. In: CHI, pp. 499–149916 (2023). https://doi.org/10.1145/3544548.3581182

  2. Panda, P., Nicholas, M.J., González-Franco, M., Inkpen, K., Ofek, E., Cutler, R., Hinckley, K., Lanier, J.: AllTogether: effect of avatars in mixed-modality conferencing environments. In: CHIWORK, pp. 8–1810 (2022). https://doi.org/10.1145/3533406.3539658

  3. Manfredi, G., Gilio, G., Baldi, V., Youssef, H., Erra, U.: VICO-DR: a collaborative virtual dressing room for image consulting. J. Imaging 9(4), 76 (2023). https://doi.org/10.3390/JIMAGING9040076

    Article  Google Scholar 

  4. Szolin, K., Kuss, D.J., Nuyens, F.M., Griffiths, M.D.: Exploring the user-avatar relationship in videogames: a systematic review of the Proteus effect. Hum. Comput. Interact. 38(5–6), 374–399 (2023). https://doi.org/10.1080/07370024.2022.2103419

    Article  Google Scholar 

  5. Guo, K., Lincoln, P., Davidson, P.L., Busch, J., Yu, X., Whalen, M., Harvey, G., Orts-Escolano, S., Pandey, R., Dourgarian, J., Tang, D., Tkach, A., Kowdle, A., Cooper, E., Dou, M., Fanello, S.R., Fyffe, G., Rhemann, C., Taylor, J., Debevec, P.E., Izadi, S.: The relightables: volumetric performance capture of humans with realistic relighting. ACM Trans. Graph. 38(6), 217–121719 (2019). https://doi.org/10.1145/3355089.3356571

    Article  Google Scholar 

  6. Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., Hoppe, H., Kirk, A.G., Sullivan, S.: High-quality streamable free-viewpoint video. ACM Trans. Graph. 34(4), 69–16913 (2015). https://doi.org/10.1145/2766945

    Article  Google Scholar 

  7. Saito, S., Huang, Z., Natsume, R., Morishima, S., Li, H., Kanazawa, A.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: ICCV, pp. 2304–2314 (2019). https://doi.org/10.1109/ICCV.2019.00239

  8. Saito, S., Simon, T., Saragih, J.M., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: CVPR, pp. 81–90 (2020). https://doi.org/10.1109/CVPR42600.2020.00016

  9. Xiu, Y., Yang, J., Tzionas, D., Black, M.J.: ICON: implicit clothed humans obtained from normals. In: CVPR, pp. 13286–13296 (2022). https://doi.org/10.1109/CVPR52688.2022.01294

  10. Weng, C., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman, I.: HumanNeRF: free-viewpoint rendering of moving people from monocular video. In: CVPR, pp. 16189–16199 (2022). https://doi.org/10.1109/CVPR52688.2022.01573

  11. Hu, S., Liu, Z.: GauHuman: articulated Gaussian splatting from monocular human videos. In: CVPR (2024)

  12. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 248–124816 (2015). https://doi.org/10.1145/2816795.2818013

    Article  Google Scholar 

  13. Feng, Y., Choutas, V., Bolkart, T., Tzionas, D., Black, M.J.: Collaborative regression of expressive bodies using moderation. In: 3DV, pp. 792–804 (2021). https://doi.org/10.1109/3DV53792.2021.00088

  14. Alldieck, T., Magnor, M.A., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: CVPR, pp. 1175–1186 (2019). https://doi.org/10.1109/CVPR.2019.00127

  15. Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.A.: Tex2Shape: detailed full human body geometry from a single image. In: ICCV, pp. 2293–2303 (2019). https://doi.org/10.1109/ICCV.2019.00238

  16. Xiu, Y., Yang, J., Cao, X., Tzionas, D., Black, M.J.: ECON: explicit clothed humans optimized via normal integration. In: CVPR, pp. 512–523 (2023). https://doi.org/10.1109/CVPR52729.2023.00057

  17. Corona, E., Hodan, T., Vo, M., Moreno-Noguer, F., Sweeney, C., Newcombe, R.A., Ma, L.: LISA: learning implicit shape and appearance of hands. In: CVPR, pp. 20501–20511 (2022). https://doi.org/10.1109/CVPR52688.2022.01988

  18. Chen, X., Wang, B., Shum, H.: Hand Avatar: free-pose hand animation and rendering from monocular video. In: CVPR, pp. 8683–8693 (2023). https://doi.org/10.1109/CVPR52729.2023.00839

  19. Chen, Z., Moon, G., Guo, K., Cao, C., Pidhorskyi, S., Simon, T., Joshi, R., Dong, Y., Xu, Y., Pires, B., Wen, H., Evans, L., Peng, B., Buffalini, J., Trimble, A., McPhail, K., Schoeller, M., Yu, S.-I., Romero, J., Zollhöfer, M., Sheikh, Y., Liu, Z., Saito, S.: URHand: universal relightable hands. In: CVPR (2024)

  20. Saito, S., Schwartz, G., Simon, T., Li, J., Nam, G.: Relightable Gaussian codec avatars. In: CVPR (2024)

  21. Bi, S., Lombardi, S., Saito, S., Simon, T., Wei, S., McPhail, K., Ramamoorthi, R., Sheikh, Y., Saragih, J.M.: Deep relightable appearance models for animatable faces. ACM Trans. Graph. 40(4), 89–18915 (2021). https://doi.org/10.1145/3450626.3459829

    Article  Google Scholar 

  22. Li, X., Sheng, B., Li, P., Kim, J., Feng, D.D.: Voxelized facial reconstruction using deep neural network. In: CGI, pp. 1–4 (2018). https://doi.org/10.1145/3208159.3208170

  23. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P.V., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: ECCV, pp. 561–578 (2016). https://doi.org/10.1007/978-3-319-46454-1_34

  24. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR, pp. 7122–7131 (2018).https://doi.org/10.1109/CVPR.2018.00744

  25. Yu, T., Zheng, Z., Guo, K., Liu, P., Dai, Q., Liu, Y.: Function4D: real-time human volumetric capture from very sparse consumer RGBD sensors. In: CVPR, pp. 5746–5756 (2021). https://doi.org/10.1109/CVPR46437.2021.00569

  26. Wang, L., Zhao, X., Yu, T., Wang, S., Liu, Y.: NormalGAN: learning detailed 3D human from a single RGB-D image. In: ECCV, vol. 12365, pp. 430–446 (2020). https://doi.org/10.1007/978-3-030-58565-5_26

  27. Tian, Y., Zhang, H., Liu, Y., Wang, L.: Recovering 3D human mesh from monocular images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(12), 15406–15425 (2023). https://doi.org/10.1109/TPAMI.2023.3298850

    Article  Google Scholar 

  28. Chen, L., Peng, S., Zhou, X.: Towards efficient and photorealistic 3D human reconstruction: a brief survey. Vis. Inform. 5(4), 11–19 (2021). https://doi.org/10.1016/J.VISINF.2021.10.003

    Article  Google Scholar 

  29. Sun, M., Yang, D., Kou, D., Jiang, Y., Shan, W., Yan, Z., Zhang, L.: Human 3D avatar modeling with implicit neural representation: a brief survey. In: 2022 14th International Conference on Signal Processing Systems (ICSPS), pp. 818–827. IEEE (2022)

  30. Ma, Q., Saito, S., Yang, J., Tang, S., Black, M.J.: SCALE: modeling clothed humans with a surface codec of articulated local elements. In: CVPR, pp. 16082–16093 (2021). https://doi.org/10.1109/CVPR46437.2021.01582

  31. Ma, Q., Yang, J., Tang, S., Black, M.J.: The power of points for modeling humans in clothing. In: ICCV, pp. 10954–10964 (2021). https://doi.org/10.1109/ICCV48922.2021.01079

  32. Manfredi, G., Capece, N., Erra, U., Gilio, G., Baldi, V., Domenico, S.G.D.: TryItOn: a virtual dressing room with motion tracking and physically based garment simulation. In: XR, vol. 13445, pp. 63–76 (2022). https://doi.org/10.1007/978-3-031-15546-8_5

  33. Fan, T., Yang, B., Bao, C., Wang, L., Zhang, G., Cui, Z.: HybridAvatar: efficient mesh-based human avatar generation from few-shot monocular images with implicit mesh displacement. In: IEEE International Symposium on Mixed and Augmented Reality Adjunct, ISMAR 2023, Sydney, Australia, October 16–20, 2023, pp. 371–376 (2023).https://doi.org/10.1109/ISMAR-ADJUNCT60411.2023.00080

  34. Varol, G., Ceylan, D., Russell, B.C., Yang, J., Yumer, E., Laptev, I., Schmid, C.: BodyNet: volumetric inference of 3D human body shapes. In: ECCV, pp. 20–38 (2018). https://doi.org/10.1007/978-3-030-01234-2_2

  35. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: DeepHuman: 3D human reconstruction from a single image. In: ICCV, pp. 7738–7748 (2019).https://doi.org/10.1109/ICCV.2019.00783

  36. Tang, S., Tan, F., Cheng, K., Li, Z., Zhu, S., Tan, P.: A neural network for detailed human depth estimation from a single image. In: ICCV, pp. 7749–7758 (2019). https://doi.org/10.1109/ICCV.2019.00784

  37. Smith, D., Loper, M., Hu, X., Mavroidis, P., Romero, J.: FACSIMILE: fast and accurate scans from an image in less than a second. In: ICCV, pp. 5329–5338 (2019). https://doi.org/10.1109/ICCV.2019.00543

  38. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 139–113914 (2023). https://doi.org/10.1145/3592433

    Article  Google Scholar 

  39. Park, J.J., Florence, P.R., Straub, J., Newcombe, R.A., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR, pp. 165–174 (2019). https://doi.org/10.1109/CVPR.2019.00025

  40. Mescheder, L.M., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR, pp. 4460–4470 (2019). https://doi.org/10.1109/CVPR.2019.00459

  41. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: ECCV, pp. 405–421 (2020). https://doi.org/10.1007/978-3-030-58452-8_24

  42. Tewari, A., Thies, J., Mildenhall, B., Srinivasan, P.P., Tretschk, E., Wang, Y., Lassner, C., Sitzmann, V., Martin-Brualla, R., Lombardi, S., Simon, T., Theobalt, C., Nießner, M., Barron, J.T., Wetzstein, G., Zollhöfer, M., Golyanik, V.: Advances in neural rendering. Comput. Graph. Forum 41(2), 703–735 (2022). https://doi.org/10.1111/CGF.14507

    Article  Google Scholar 

  43. Pfister, H., Zwicker, M., Baar, J., Gross, M.H.: Surfels: surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 335–342 (2000). https://doi.org/10.1145/344779.344936

  44. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005). https://doi.org/10.1145/1073204.1073207

    Article  Google Scholar 

  45. Xu, H., Bazavan, E.G., Zanfir, A., Freeman, W.T., Sukthankar, R., Sminchisescu, C.: GHUM & GHUML: generative 3D human shape and articulated pose models. In: CVPR, pp. 6183–6192 (2020). https://doi.org/10.1109/CVPR42600.2020.00622

  46. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: sparse trained articulated human body regressor. In: ECCV, vol. 12351, pp. 598–613 (2020). https://doi.org/10.1007/978-3-030-58539-6_36

  47. Zheng, Z., Yu, T., Liu, Y., Dai, Q.: PaMIR: parametric model-conditioned implicit representation for image-based human reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3170–3184 (2022). https://doi.org/10.1109/TPAMI.2021.3050505

    Article  Google Scholar 

  48. Hong, F., Chen, Z., Lan, Y., Pan, L., Liu, Z.: EVA3D: compositional 3D human generation from 2D image collections. In: ICLR (2023)

  49. Dong, Z., Chen, X., Yang, J., Black, M.J., Hilliges, O., Geiger, A.: AG3D: learning to generate 3D avatars from 2D image collections. In: ICCV, pp. 14870–14881 (2023). https://doi.org/10.1109/ICCV51070.2023.01370

  50. Huang, Y., Yi, H., Xiu, Y., Liao, T., Tang, J., Cai, D., Thies, J.: TeCH: text-guided reconstruction of lifelike clothed humans. In: 3DV (2024)

  51. Albahar, B., Saito, S., Tseng, H., Kim, C., Kopf, J., Huang, J.: Single-image 3D human digitization with shape-guided diffusion. In: SIGGRAPH Asia 2023 Conference Papers, pp. 62–16211 (2023). https://doi.org/10.1145/3610548.3618153

  52. Yao, J., Chen, J., Niu, L., Sheng, B.: Scene-aware human pose generation using transformer. In: MM, pp. 2847–2855 (2023). https://doi.org/10.1145/3581783.3612439

  53. Kamel, A., Liu, B., Li, P., Sheng, B.: An investigation of 3D human pose estimation for learning Tai Chi: a human factor perspective. Int. J. Hum. Comput. Interact. 35(4–5), 427–439 (2019). https://doi.org/10.1080/10447318.2018.1543081

    Article  Google Scholar 

  54. Kamel, A., Sheng, B., Li, P., Kim, J., Feng, D.D.: Efficient body motion quantification and similarity evaluation using 3-D joints skeleton coordinates. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 2774–2788 (2021). https://doi.org/10.1109/TSMC.2019.2916896

    Article  Google Scholar 

  55. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. 36(6), 194–119417 (2017). https://doi.org/10.1145/3130800.3130813

    Article  Google Scholar 

  56. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. 36(6), 245–124517 (2017). https://doi.org/10.1145/3130800.3130883

    Article  Google Scholar 

  57. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A.A., Tzionas, D., Black, M.J.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR, pp. 10975–10985 (2019). https://doi.org/10.1109/CVPR.2019.01123

  58. Zhu, H., Zuo, X., Wang, S., Cao, X., Yang, R.: Detailed human shape estimation from a single image by hierarchical mesh deformation. In: CVPR, pp. 4491–4500 (2019). https://doi.org/10.1109/CVPR.2019.00462

  59. Lazova, V., Insafutdinov, E., Pons-Moll, G.: 360-Degree textures of people in clothing from a single image. In: 3DV, pp. 643–653 (2019). https://doi.org/10.1109/3DV.2019.00076

  60. Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M.J.: Learning to dress 3D people in generative clothing. In: CVPR, pp. 6468–6477 (2020). https://doi.org/10.1109/CVPR42600.2020.00650

  61. Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-Garment Net: learning to dress 3D people from images. In: ICCV, pp. 5419–5429 (2019). https://doi.org/10.1109/ICCV.2019.00552

  62. Jiang, B., Zhang, J., Hong, Y., Luo, J., Liu, L., Bao, H.: BCNet: learning body and cloth shape from a single image. In: ECCV, vol. 12365, pp. 18–35 (2020). https://doi.org/10.1007/978-3-030-58565-5_2

  63. Patel, C., Liao, Z., Pons-Moll, G.: TailorNet: predicting clothing in 3D as a function of human pose, shape and garment style. In: CVPR, pp. 7363–7373 (2020).https://doi.org/10.1109/CVPR42600.2020.00739

  64. Corona, E., Pumarola, A., Alenyà, G., Pons-Moll, G., Moreno-Noguer, F.: SMPLicit: topology-aware generative model for clothed people. In: CVPR, pp. 11875–11885 (2021). https://doi.org/10.1109/CVPR46437.2021.01170

  65. Luigi, L.D., Li, R., Guillard, B., Salzmann, M., Fua, P.: DrapeNet: garment generation and self-supervised draping. In: CVPR, pp. 1451–1460 (2023). https://doi.org/10.1109/CVPR52729.2023.00146

  66. Mikić, I., Trivedi, M., Hunter, E., Cosman, P.: Human body model acquisition and tracking using voxel data. Int. J. Comput. Vis. 53, 199–223 (2003)

    Article  Google Scholar 

  67. Gilbert, A., Volino, M., Collomosse, J.P., Hilton, A.: Volumetric performance capture from minimal camera viewpoints. In: ECCV, vol. 11215, pp. 591–607 (2018). https://doi.org/10.1007/978-3-030-01252-6_35

  68. Stoll, C., Hasler, N., Gall, J., Seidel, H., Theobalt, C.: Fast articulated motion tracking using a sums of Gaussians body model. In: ICCV, pp. 951–958 (2011).https://doi.org/10.1109/ICCV.2011.6126338

  69. Robertini, N., Casas, D., Rhodin, H., Seidel, H., Theobalt, C.: Model-based outdoor performance capture. In: 3DV, pp. 166–175 (2016). https://doi.org/10.1109/3DV.2016.25

  70. Chen, G., Wang, W.: A survey on 3D Gaussian splatting (2024). arXiv preprint arXiv:2401.03890

  71. Bai, S., Li, J.: Progress and prospects in 3D generative AI: a technical overview including 3D human (2024). arXiv preprint arXiv:2401.02620

  72. Wu, T., Yuan, Y.-J., Zhang, L.-X., Yang, J., Cao, Y.-P., Yan, L.-Q., Gao, L.: Recent advances in 3D Gaussian Splatting. Comput. Vis. Media (2024). https://doi.org/10.1007/s41095-024-0436-y

    Article  Google Scholar 

  73. Xu, Z., Peng, S., Lin, H., He, G., Sun, J., Shen, Y., Bao, H., Zhou, X.: 4K4D: real-time 4D view synthesis at 4K resolution. In: CVPR (2024)

  74. Wu, G., Yi, T., Fang, J., Xie, L., Zhang, X., Wei, W., Liu, W., Tian, Q., Xinggang, W.: 4D Gaussian splatting for real-time dynamic scene rendering. In: CVPR (2024)

  75. Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D Gaussians: tracking by persistent dynamic view synthesis. In: 3DV (2024)

  76. Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., Jin, X.: Deformable 3D Gaussians for high-fidelity monocular dynamic scene reconstruction. In: CVPR (2024)

  77. Huang, B., Yu, Z., Chen, A., Geiger, A., Gao, S.: 2D Gaussian splatting for geometrically accurate radiance fields. In: ACM SIGGRAPH 2024 Conference Papers, SIGGRAPH 2024, Denver, CO, USA, 27 July 2024–1 August 2024, pp. 32 (2024). https://doi.org/10.1145/3641519.3657428

  78. Guédon, A., Lepetit, V.: Sugar: Surface-aligned gaussian splatting for efficient 3D mesh reconstruction and high-quality mesh rendering. In: CVPR (2024)

  79. Chen, H., Li, C., Lee, G.H.: NeuSG: neural implicit surface reconstruction with 3D Gaussian splatting guidance (2023). arXiv preprint arXiv:2312.00846

  80. Chen, Z., Wang, F., Liu, H.: Text-to-3D using Gaussian splatting (2023). arXiv preprint arXiv:2309.16585

  81. Li, X., Wang, H., Tseng, K.-K.: GaussianDiffusion: 3D Gaussian splatting for denoising diffusion probabilistic models with structured noise (2023). arXiv preprint arXiv:2311.11221

  82. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: DreamGaussian: generative Gaussian splatting for efficient 3D content creation (2023). arXiv preprint arXiv:2309.16653

  83. Zielonka, W., Bagautdinov, T., Saito, S., Zollhöfer, M., Thies, J., Romero, J.: Drivable 3D Gaussian avatars (2023). arXiv preprint arXiv:2311.13404

  84. Shao, Z., Wang, Z., Li, Z., Wang, D., Lin, X., Zhang, Y., Fan, M., Wang, Z.: SplattingAvatar: realistic real-time human avatars with mesh-embedded Gaussian splatting. In: CVPR (2024)

  85. Liu, X., Wu, C., Liu, J., Liu, X., Zhao, C., Feng, H., Ding, E., Wang, J.: GVA: reconstructing Vivid 3D Gaussian avatars from monocular videos. Arxiv (2024)

  86. Svitov, D., Morerio, P., Agapito, L., Del Bue, A.: HAHA: highly articulated Gaussian human avatars with textured mesh prior (2024). arXiv preprint arXiv:2404.01053

  87. Wen, J., Zhao, X., Ren, Z., Schwing, A., Wang, S.: GoMAvatar: efficient animatable human modeling from monocular video using Gaussians-on-mesh. In: CVPR (2024)

  88. Jiang, Y., Liao, Q., Li, X., Ma, L., Zhang, Q., Zhang, C., Lu, Z., Shan, Y.: UV Gaussians: joint learning of mesh deformation and gaussian textures for human avatar modeling (2024). arXiv preprint arXiv:2403.11589

  89. Liu, X., Zhan, X., Tang, J., Shan, Y., Zeng, G., Lin, D., Liu, X., Liu, Z.: HumanGaussian: text-driven 3D human generation with Gaussian splatting. In: CVPR (2024)

  90. Abdal, R., Yifan, W., Shi, Z., Xu, Y., Po, R., Kuang, Z., Chen, Q., Yeung, D.-Y., Wetzstein, G.: Gaussian shell maps for efficient 3D human generation. In: CVPR (2024)

  91. Cheng, W., Chen, R., Fan, S., Yin, W., Chen, K., Cai, Z., Wang, J., Gao, Y., Yu, Z., Lin, Z., Ren, D., Yang, L., Liu, Z., Loy, C.C., Qian, C., Wu, W., Lin, D., Dai, B., Lin, K.: DNA-rendering: a diverse neural actor repository for high-fidelity human-centric rendering. In: ICCV, pp. 19925–19936 (2023). https://doi.org/10.1109/ICCV51070.2023.01829

  92. Bonopera, S., Hedman, P., Esnault, J., Prakash, S., Rodriguez, S., Thonat, T., Benadel, M., Chaurasia, G., Philip, J., Drettakis, G.: SIBR: a system for image based rendering (2020). https://sibr.gitlabpages.inria.fr/

  93. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 163–169 (1987). https://doi.org/10.1145/37401.37422

  94. Alldieck, T., Zanfir, M., Sminchisescu, C.: Photorealistic monocular 3D reconstruction of humans wearing clothing. In: CVPR, pp. 1496–1505 (2022). https://doi.org/10.1109/CVPR52688.2022.00156

  95. Corona, E., Zanfir, M., Alldieck, T., Bazavan, E.G., Zanfir, A., Sminchisescu, C.: Structured 3D features for reconstructing controllable avatars. In: CVPR, pp. 16954–16964 (2023). https://doi.org/10.1109/CVPR52729.2023.01626

  96. Lin, L., Zhu, J.: Topology-preserved human reconstruction with details. Vis. Comput. 39(8), 3609–3619 (2023). https://doi.org/10.1007/S00371-023-02957-0

    Article  Google Scholar 

  97. Hu, S., Hong, F., Pan, L., Mei, H., Yang, L., Liu, Z.: SHERF: generalizable human nerf from a single image. In: ICCV, pp. 9318–9330 (2023). https://doi.org/10.1109/ICCV51070.2023.00858

  98. Huang, Y., Yi, H., Liu, W., Wang, H., Wu, B., Wang, W., Lin, B., Zhang, D., Cai, D.: One-shot implicit animatable avatars with model-based priors. In: ICCV, pp. 8940–8951 (2023). https://doi.org/10.1109/ICCV51070.2023.00824

  99. Alldieck, T., Magnor, M.A., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3D people models. In: CVPR, pp. 8387–8397 (2018). https://doi.org/10.1109/CVPR.2018.00875

  100. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020). https://doi.org/10.1145/3422622

    Article  MathSciNet  Google Scholar 

  101. Zhu, H., Qiu, L., Qiu, Y., Han, X.: Registering explicit to implicit: towards high-fidelity garment mesh reconstruction from single images. In: CVPR, pp. 3835–3844 (2022). https://doi.org/10.1109/CVPR52688.2022.00382

  102. Cao, X., Santo, H., Shi, B., Okura, F., Matsushita, Y.: Bilateral normal integration. In: ECCV 13661, 552–567 (2022). https://doi.org/10.1007/978-3-031-19769-7_32

    Article  Google Scholar 

  103. Han, S., Park, M., Yoon, J.H., Kang, J., Park, Y., Jeon, H.: High-fidelity 3D human digitization from single 2K resolution images. In: CVPR, pp. 12869–12879 (2023).https://doi.org/10.1109/CVPR52729.2023.01237

  104. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: ARCH: animatable reconstruction of clothed humans. In: CVPR, pp. 3090–3099 (2020). https://doi.org/10.1109/CVPR42600.2020.00316

  105. He, T., Xu, Y., Saito, S., Soatto, S., Tung, T.: ARCH++: animation-ready clothed human reconstruction revisited. In: ICCV, pp. 11026–11036 (2021). https://doi.org/10.1109/ICCV48922.2021.01086

  106. Liao, T., Zhang, X., Xiu, Y., Yi, H., Liu, X., Qi, G., Zhang, Y., Wang, X., Zhu, X., Lei, Z.: High-fidelity clothed avatar reconstruction from a single image. In: CVPR, pp. 8662–8672 (2023). https://doi.org/10.1109/CVPR52729.2023.00837

  107. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: text-to-3D using 2D diffusion. In: ICLR (2023)

  108. Chen, M., Chen, J., Ye, X., Gao, H.-a., Chen, X., Fan, Z., Zhao, H.: Ultraman: single image 3D human reconstruction with ultra speed and detail. arXiv preprint arXiv:2403.12028 (2024)

  109. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 5967–5976 (2017). https://doi.org/10.1109/CVPR.2017.632

  110. Moon, G., Nam, H., Shiratori, T., Lee, K.M.: 3D clothed human reconstruction in the wild. In: ECCV, vol. 13662, pp. 184–200 (2022). https://doi.org/10.1007/978-3-031-20086-1_11

  111. Gabeur, V., Franco, J., Martin, X., Schmid, C., Rogez, G.: Moulding humans: non-parametric 3D human shape estimation from single images. In: ICCV, pp. 2232–2241 (2019).https://doi.org/10.1109/ICCV.2019.00232

  112. Kazhdan, M.M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Cagliari, Sardinia, Italy, June 26–28, 2006. ACM International Conference Proceeding Series, vol. 256, pp. 61–70 (2006). https://doi.org/10.2312/SGP/SGP06/061-070

  113. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3D shape reconstruction and completion. In: CVPR, pp. 6968–6979 (2020). https://doi.org/10.1109/CVPR42600.2020.00700

  114. Kazhdan, M.M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. 32(3), 29–12913 (2013). https://doi.org/10.1145/2487228.2487237

    Article  Google Scholar 

  115. Gao, J., Chen, W., Xiang, T., Jacobson, A., McGuire, M., Fidler, S.: Learning deformable tetrahedral meshes for 3D reconstruction. In: NeurIPS (2020)

  116. Shen, T., Gao, J., Yin, K., Liu, M., Fidler, S.: Deep marching tetrahedra: a hybrid representation for high-resolution 3D shape synthesis. In: NeurIPS, pp. 6087–6101 (2021)

  117. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10674–10685 (2022). https://doi.org/10.1109/CVPR52688.2022.01042

  118. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: ICCV, pp. 3813–3824 (2023). https://doi.org/10.1109/ICCV51070.2023.00355

  119. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: CVPR, pp. 22500–22510 (2023). https://doi.org/10.1109/CVPR52729.2023.02155

  120. Li, J., Li, D., Xiong, C., Hoi, S.C.H.: BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML, vol. 162, pp. 12888–12900 (2022)

  121. Xiu, Y., Ye, Y., Liu, Z., Tzionas, D., Black, M.J.: PuzzleAvatar: assembling 3D avatars from personal albums (2024). arXiv preprint arXiv:2405.14869

  122. Gao, X., Li, X., Zhang, C., Zhang, Q., Cao, Y., Shan, Y., Quan, L.: ConTex-Human: free-view rendering of human from a single image with texture-consistent synthesis (2023). arXiv preprint arXiv:2311.17123

  123. Liu, R., Wu, R., Hoorick, B.V., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-1-to-3: Zero-shot one image to 3D object. In: ICCV, pp. 9264–9275 (2023). https://doi.org/10.1109/ICCV51070.2023.00853

  124. He, T., Collomosse, J.P., Jin, H., Soatto, S.: Geo-PIFu: geometry and pixel aligned implicit functions for single-view human reconstruction. In: NeurIPS (2020)

  125. Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR, pp. 8798–8807 (2018). https://doi.org/10.1109/CVPR.2018.00917

  126. Yang, X., Luo, Y., Xiu, Y., Wang, W., Xu, H., Fan, Z.: D-IF: uncertainty-aware human digitization via implicit distribution field. In: ICCV, pp. 9088–9098 (2023). https://doi.org/10.1109/ICCV51070.2023.00837

  127. Cao, Y., Han, K., Wong, K.K.: SeSDF: self-evolved signed distance field for implicit 3D clothed human reconstruction. In: CVPR, pp. 4647–4657 (2023). https://doi.org/10.1109/CVPR52729.2023.00451

  128. Song, D., Lee, H., Seo, J., Cho, D.: DIFu: depth-guided implicit function for clothed human reconstruction. In: CVPR, pp. 8738–8747 (2023). https://doi.org/10.1109/CVPR52729.2023.00844

  129. Zhang, Z., Sun, L., Yang, Z., Chen, L., Yang, Y.: Global-correlated 3D-decoupling transformer for clothed avatar reconstruction. In: NeurIPS (2023)

  130. Choi, H., Moon, G., Armando, M., Leroy, V., Lee, K.M., Rogez, G.: MonoNHR: monocular neural human renderer. In: 3DV, pp. 242–251 (2022). https://doi.org/10.1109/3DV57658.2022.00036

  131. Weng, Z., Liu, J., Tan, H., Xu, Z., Zhou, Y., Yeung-Levy, S., Yang, J.: Single-view 3D human digitalization with large reconstruction models. arXiv preprint arXiv:2401.12175 (2024)

  132. Hong, Y., Zhang, K., Gu, J., Bi, S., Zhou, Y., Liu, D., Liu, F., Sunkavalli, K., Bui, T., Tan, H.: LRM: large reconstruction model for single image to 3D (2023). arXiv preprint arXiv:2311.04400

  133. Xu, X., Loy, C.C.: 3D human texture estimation from a single image with transformers. In: ICCV, pp. 13829–13838 (2021). https://doi.org/10.1109/ICCV48922.2021.01359

  134. Svitov, D., Gudkov, D., Bashirov, R., Lempitsky, V.: DINAR: diffusion inpainting of neural textures for one-shot human avatars. In: ICCV, pp. 7039–7049 (2023). https://doi.org/10.1109/ICCV51070.2023.00650

  135. Zhan, X., Yang, J., Li, Y., Guo, J., Guo, Y., Wang, W.: Semantic human mesh reconstruction with textures (2024). arXiv preprint arXiv:2403.02561

  136. Zhang, J., Li, X., Zhang, Q., Cao, Y., Shan, Y., Liao, J.: HumanRef: single image to 3D human generation via reference-guided diffusion. arXiv preprint arXiv:2311.16961 (2023)

  137. Natsume, R., Saito, S., Huang, Z., Chen, W., Ma, C., Li, H., Morishima, S.: SiCloPe: silhouette-based clothed people. In: CVPR, pp. 4480–4490 (2019). https://doi.org/10.1109/CVPR.2019.00461

  138. Sengupta, A., Alldieck, T., Kolotouros, N., Corona, E., Zanfir, A., Sminchisescu, C.: DiffHuman: probabilistic photorealistic 3D reconstruction of humans (2024). arXiv preprint arXiv:2404.00485

  139. Wang, J., Zhong, Y., Li, Y., Zhang, C., Wei, Y.: Re-identification supervised texture generation. In: CVPR, pp. 11846–11856 (2019). https://doi.org/10.1109/CVPR.2019.01212

  140. Xu, X., Chen, H., Moreno-Noguer, F., Jeni, L.A., Torre, F.D.: 3D human pose, shape and texture from low-resolution images and videos. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4490–4504 (2022). https://doi.org/10.1109/TPAMI.2021.3070002

    Article  Google Scholar 

  141. Altindis, S.F., Meric, A., Dalva, Y., Gudukbay, U., Dundar, A.: Refining 3D human texture estimation from a single image (2023). arXiv preprint arXiv:2303.03471

  142. Fang, Q., Shuai, Q., Dong, J., Bao, H., Zhou, X.: Reconstructing 3D human pose by watching humans in the mirror. In: CVPR, pp. 12814–12823 (2021). https://doi.org/10.1109/CVPR46437.2021.01262

  143. Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., Zhou, X.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: CVPR, pp. 9054–9063 (2021). https://doi.org/10.1109/CVPR46437.2021.00894

  144. Xu, W., Chatterjee, A., Zollhöfer, M., Rhodin, H., Mehta, D., Seidel, H., Theobalt, C.: MonoPerfCap: human performance capture from monocular video. ACM Trans. Graph. 37(2), 27 (2018). https://doi.org/10.1145/3181973

    Article  Google Scholar 

  145. Habermann, M., Xu, W., Zollhöfer, M., Pons-Moll, G., Theobalt, C.: LiveCap: real-time human performance capture from monocular video. ACM Trans. Graph. 38(2), 14–11417 (2019). https://doi.org/10.1145/3311970

    Article  Google Scholar 

  146. Habermann, M., Xu, W., Zollhöfer, M., Pons-Moll, G., Theobalt, C.: DeepCap: monocular human performance capture using weak supervision. In: CVPR, pp. 5051–5062 (2020)

  147. Alldieck, T., Magnor, M.A., Xu, W., Theobalt, C., Pons-Moll, G.: Detailed human avatars from monocular video. In: 3DV, pp. 98–109 (2018). https://doi.org/10.1109/3DV.2018.00022

  148. Jiang, B., Hong, Y., Bao, H., Zhang, J.: SelfRecon: self reconstruction your digital avatar from monocular video. In: CVPR, pp. 5595–5605 (2022). https://doi.org/10.1109/CVPR52688.2022.00552

  149. Peng, S., Dong, J., Wang, Q., Zhang, S., Shuai, Q., Zhou, X., Bao, H.: Animatable neural radiance fields for modeling dynamic human bodies. In: ICCV, pp. 14294–14303 (2021). https://doi.org/10.1109/ICCV48922.2021.01405

  150. Chen, J., Zhang, Y., Kang, D., Zhe, X., Bao, L., Jia, X., Lu, H.: Animatable neural radiance fields from monocular RGB videos (2021). arXiv preprint arXiv:2106.13629

  151. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018). https://doi.org/10.1109/CVPR.2018.00068

  152. Li, R., Tanke, J., Vo, M., Zollhöfer, M., Gall, J., Kanazawa, A., Lassner, C.: TAVA: template-free animatable volumetric actors. In: ECCV, vol. 13692, pp. 419–436 (2022). https://doi.org/10.1007/978-3-031-19824-3_25

  153. Jiang, W., Yi, K.M., Samei, G., Tuzel, O., Ranjan, A.: NeuMan: Neural human radiance field from a single video. In: ECCV, vol. 13692, pp. 402–418 (2022).https://doi.org/10.1007/978-3-031-19824-3_24

  154. Yu, Z., Cheng, W., Liu, X., Wu, W., Lin, K.: MonoHuman: animatable human neural field from monocular video. In: CVPR, pp. 16943–16953 (2023).https://doi.org/10.1109/CVPR52729.2023.01625

  155. Wang, S., Schwarz, K., Geiger, A., Tang, S.: ARAH: animatable volume rendering of articulated human SDFs. In: ECCV, vol. 13692, pp. 1–19 (2022). https://doi.org/10.1007/978-3-031-19824-3_1

  156. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: ICML. Proceedings of Machine Learning Research, vol. 119, pp. 3789–3799 (2020)

  157. Jiang, T., Chen, X., Song, J., Hilliges, O.: InstantAvatar: learning avatars from monocular video in 60 seconds. In: CVPR, pp. 16922–16932 (2023).https://doi.org/10.1109/CVPR52729.2023.01623

  158. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution Hash encoding. ACM Trans. Graph. 41(4), 102–110215 (2022). https://doi.org/10.1145/3528223.3530127

    Article  Google Scholar 

  159. Feng, Y., Yang, J., Pollefeys, M., Black, M.J., Bolkart, T.: Capturing and animation of body and clothing from monocular video. In: SIGGRAPH Asia 2022 Conference Papers, pp. 45–1459 (2022). https://doi.org/10.1145/3550469.3555423

  160. Zheng, Z., Huang, H., Yu, T., Zhang, H., Guo, Y., Liu, Y.: Structured local radiance fields for human avatar modeling. In: CVPR, pp. 15872–15882 (2022). https://doi.org/10.1109/CVPR52688.2022.01543

  161. Su, S., Yu, F., Zollhöfer, M., Rhodin, H.: A-NeRF: articulated neural radiance fields for learning human shape, appearance, and pose. In: NeurIPS, pp. 12278–12291 (2021)

  162. Xu, T., Fujita, Y., Matsumoto, E.: Surface-aligned neural radiance fields for controllable 3D human synthesis. In: CVPR, pp. 15862–15871 (2022). https://doi.org/10.1109/CVPR52688.2022.01542

  163. Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. 40(6), 219–121916 (2021). https://doi.org/10.1145/3478513.3480528

    Article  Google Scholar 

  164. Chen, Y., Wang, X., Chen, X., Zhang, Q., Li, X., Guo, Y., Wang, J., Wang, F.: UV volumes for real-time rendering of editable free-view human performance. In: CVPR, pp. 16621–16631 (2023). https://doi.org/10.1109/CVPR52729.2023.01595

  165. Li, Z., Zheng, Z., Wang, L., Liu, Y.: Animatable Gaussians: learning pose-dependent gaussian maps for high-fidelity human avatar modeling. In: CVPR (2024)

  166. Lei, J., Wang, Y., Pavlakos, G., Liu, L., Daniilidis, K.: GART: Gaussian articulated template models. In: CVPR (2024)

  167. Kocabas, M., Chang, J.-H.R., Gabriel, J., Tuzel, O., Ranjan, A.: HUGS: human Gaussian splats. In: CVPR (2024)

  168. Hu, L., Zhang, H., Zhang, Y., Zhou, B., Liu, B., Zhang, S., Nie, L.: GaussianAvatar: towards realistic human avatar modeling from a single video via animatable 3D Gaussians. In: CVPR (2024)

  169. Pang, H., Zhu, H., Kortylewski, A., Theobalt, C., Habermann, M.: ASH: animatable Gaussian splats for efficient and photoreal human rendering. In: CVPR (2024)

  170. Guo, C., Jiang, T., Chen, X., Song, J., Hilliges, O.: Vid2Avatar: 3D avatar reconstruction from videos in the wild via self-supervised scene decomposition. In: CVPR, pp. 12858–12868 (2023). https://doi.org/10.1109/CVPR52729.2023.01236

  171. Feng, Y., Liu, W., Bolkart, T., Yang, J., Pollefeys, M., Black, M.J.: Learning disentangled avatars with hybrid 3D representations. arXiv (2023)

  172. Wang, K., Zhang, G., Cong, S., Yang, J.: Clothed human performance capture with a double-layer neural radiance fields. In: CVPR, pp. 21098–21107 (2023). https://doi.org/10.1109/CVPR52729.2023.02021

  173. Chen, M., Zhang, J., Xu, X., Liu, L., Cai, Y., Feng, J., Yan, S.: Geometry-guided progressive nerf for generalizable and efficient neural human rendering. In: ECCV, vol. 13683, pp. 222–239 (2022). https://doi.org/10.1007/978-3-031-20050-2_14

  174. Peng, B., Hu, J., Zhou, J., Zhang, J.: SelfNeRF: fast training NeRF for human from monocular self-rotating video (2022). arXiv preprint arXiv:2210.01651

  175. Geng, C., Peng, S., Xu, Z., Bao, H., Zhou, X.: Learning neural volumetric representations of dynamic humans in minutes. In: CVPR, pp. 8759–8770 (2023).https://doi.org/10.1109/CVPR52729.2023.00846

  176. Kwon, Y., Kim, D., Ceylan, D., Fuchs, H.: Neural human performer: learning generalizable radiance fields for human performance rendering. In: NeurIPS, pp. 24741–24752 (2021)

  177. Li, C., Lin, J., Lee, G.H.: GHuNeRF: generalizable human NeRF from a monocular video (2023). arXiv preprint arXiv:2308.16576

  178. Chen, X., Zheng, Y., Black, M.J., Hilliges, O., Geiger, A.: SNARF: differentiable forward skinning for animating non-rigid neural implicit shapes. In: ICCV, pp. 11574–11584 (2021). https://doi.org/10.1109/ICCV48922.2021.01139

  179. Chen, X., Jiang, T., Song, J., Rietmann, M., Geiger, A., Black, M.J., Hilliges, O.: Fast-SNARF: a fast deformer for articulated neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 45(10), 11796–11809 (2023). https://doi.org/10.1109/TPAMI.2023.3271569

    Article  Google Scholar 

  180. Zhi, Y., Qian, S., Yan, X., Gao, S.: Dual-space NeRF: learning animatable avatars and scene lighting in separate spaces. In: 3DV, pp. 1–10 (2022). https://doi.org/10.1109/3DV57658.2022.00048

  181. Mu, J., Sang, S., Vasconcelos, N., Wang, X.: ActorsNeRF: animatable few-shot human rendering with generalizable NeRFs. In: ICCV, pp. 18345–18355 (2023). https://doi.org/10.1109/ICCV51070.2023.01686

  182. Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: ICCV, pp. 5742–5752 (2021). https://doi.org/10.1109/ICCV48922.2021.00571

  183. Te, G., Li, X., Li, X., Wang, J., Hu, W., Lu, Y.: Neural capture of animatable 3D human from monocular video. In: ECCV, vol. 13666, pp. 275–291 (2022). https://doi.org/10.1007/978-3-031-20068-7_16

  184. Su, S., Bagautdinov, T.M., Rhodin, H.: DANBO: disentangled articulated neural body representations via graph neural networks. In: ECCV, vol. 13662, pp. 107–124 (2022).https://doi.org/10.1007/978-3-031-20086-1_7

  185. Zhang, R., Chen, J.: NDF: neural deformable fields for dynamic human modelling. In: ECCV, vol. 13692, pp. 37–52 (2022).https://doi.org/10.1007/978-3-031-19824-3_3

  186. Li, M., Tao, J., Yang, Z., Yang, Y.: Human101: Training 100+FPS human Gaussians in 100s from 1 view (2023). arXiv preprint arXiv:2312.15258

  187. Moreau, A., Song, J., Dhamo, H., Shaw, R., Zhou, Y., Pérez-Pellitero, E.: Human Gaussian splatting: real-time rendering of animatable avatars (2023). arXiv preprint arXiv:2311.17113

  188. Qian, Z., Wang, S., Mihajlovic, M., Geiger, A., Tang, S.: 3DGS-Avatar: animatable avatars via deformable 3D Gaussian splatting. In: CVPR (2024)

  189. Li, M., Yao, S., Xie, Z., Chen, K., Jiang, Y.-G.: GaussianBody: clothed human reconstruction via 3D Gaussian splatting (2024). arXiv preprint arXiv:2401.09720

  190. Jung, H., Brasch, N., Song, J., Perez-Pellitero, E., Zhou, Y., Li, Z., Navab, N., Busam, B.: Deformable 3D Gaussian splatting for animatable human avatars (2023). arXiv preprint arXiv:2312.15059

  191. Jena, R., Iyer, G.S., Choudhary, S., Smith, B., Chaudhari, P., Gee, J.: SplatArmor: articulated Gaussian splatting for animatable humans from monocular RGB videos (2023). arXiv preprint arXiv:2311.10812

  192. Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, D.D.: Deep convolutional neural networks for human action recognition using depth maps and postures. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1806–1819 (2019). https://doi.org/10.1109/TSMC.2018.2850149

    Article  Google Scholar 

  193. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014). https://doi.org/10.1109/TPAMI.2013.248

    Article  Google Scholar 

  194. Joo, H., Liu, H., Tan, L., Gui, L., Nabbe, B.C., Matthews, I.A., Kanade, T., Nobuhara, S., Sheikh, Y.: Panoptic studio: a massively multiview system for social motion capture. In: ICCV, pp. 3334–3342 (2015). https://doi.org/10.1109/ICCV.2015.381

  195. Mehta, D., Rhodin, H., Casas, D., Fua, P., Sotnychenko, O., Xu, W., Theobalt, C.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 3DV, pp. 506–516 (2017). https://doi.org/10.1109/3DV.2017.00064

  196. Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In: ECCV, vol. 11214, pp. 614–631 (2018). https://doi.org/10.1007/978-3-030-01249-6_37

  197. Tsuchida, S., Fukayama, S., Hamasaki, M., Goto, M.: AIST dance video database: multi-genre, multi-dancer, and multi-camera database for dance information processing. In: ISMIR, pp. 501–510 (2019)

  198. Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: ICCV, pp. 13381–13392 (2021).https://doi.org/10.1109/ICCV48922.2021.01315

  199. Isik, M., Rünz, M., Georgopoulos, M., Khakhulin, T., Starck, J., Agapito, L., Nießner, M.: HumanRF: high-fidelity neural radiance fields for humans in motion. ACM Trans. Graph. 42(4), 160–116012 (2023). https://doi.org/10.1145/3592415

    Article  Google Scholar 

  200. Cai, Z., Ren, D., Zeng, A., Lin, Z., Yu, T., Wang, W., Fan, X., Gao, Y., Yu, Y., Pan, L., Hong, F., Zhang, M., Loy, C.C., Yang, L., Liu, Z.: HuMMan: multi-modal 4D human dataset for versatile sensing and modeling. In: ECCV, vol. 13667, pp. 557–577 (2022). https://doi.org/10.1007/978-3-031-20071-7_33

  201. Cheng, W., Xu, S., Piao, J., Qian, C., Wu, W., Lin, K.-Y., Li, H.: Generalizable neural performer: learning robust radiance fields for human novel view synthesis (2022). arXiv preprint arXiv:2204.11798

  202. Xiong, Z., Li, C., Liu, K., Liao, H., Hu, J., Zhu, J., Ning, S., Qiu, L., Wang, C., Wang, S., et al.: MVHumanNet: a large-scale dataset of multi-view daily dressing human captures (2023). arXiv preprint arXiv:2312.02963

  203. Zhang, C., Pujades, S., Black, M.J., Pons-Moll, G.: Detailed, accurate, human shape estimation from clothed 3D scan sequences. In: CVPR, pp. 5484–5493 (2017).https://doi.org/10.1109/CVPR.2017.582

  204. Su, Z., Yu, T., Wang, Y., Liu, Y.: DeepCloth: neural garment representation for shape and style editing. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1581–1593 (2023). https://doi.org/10.1109/TPAMI.2022.3168569

    Article  Google Scholar 

  205. Habermann, M., Liu, L., Xu, W., Zollhöfer, M., Pons-Moll, G., Theobalt, C.: Real-time deep dynamic characters. ACM Trans. Graph. 40(4), 94–19416 (2021). https://doi.org/10.1145/3450626.3459749

    Article  Google Scholar 

  206. Yu, Z., Yoon, J.S., Lee, I.K., Venkatesh, P., Park, J., Yu, J., Park, H.S.: HUMBI: a large multiview dataset of human body expressions. In: CVPR, pp. 2987–2997 (2020). https://doi.org/10.1109/CVPR42600.2020.00306

  207. Yoon, J.S., Yu, Z., Park, J., Park, H.S.: HUMBI: a large multiview dataset of human body expressions and benchmark challenge. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 623–640 (2023). https://doi.org/10.1109/TPAMI.2021.3138762

    Article  Google Scholar 

  208. Over 4,000 Scanned 3D People Models. https://renderpeople.com/

  209. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  210. Zheng, Z., Zhao, X., Zhang, H., Liu, B., Liu, Y.: AvatarReX: real-time expressive full-body avatars. ACM Trans. Graph. 42(4), 158–115819 (2023). https://doi.org/10.1145/3592101

    Article  Google Scholar 

  211. Dong, J., Fang, Q., Guo, Y., Peng, S., Shuai, Q., Zhou, X., Bao, H.: TotalSelfScan: learning full-body avatars from self-portrait videos of faces, hands, and bodies. In: NeurIPS (2022)

  212. Yu, T., Zheng, Z., Guo, K., Zhao, J., Dai, Q., Li, H., Pons-Moll, G., Liu, Y.: DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor. In: CVPR, pp. 7287–7296 (2018). https://doi.org/10.1109/CVPR.2018.00761

  213. Lin, S., Li, Z., Su, Z., Zheng, Z., Zhang, H., Liu, Y.: LayGA: layered Gaussian avatars for animatable clothing transfer (2024). arXiv preprint arXiv:2405.07319

  214. Khirodkar, R., Tripathi, S., Kitani, K.: Occluded human mesh recovery. In: CVPR, pp. 1705–1715 (2022). https://doi.org/10.1109/CVPR52688.2022.00176

  215. Wang, J., Yoon, J.S., Wang, T.Y., Singh, K.K., Neumann, U.: Complete 3D human reconstruction from a single incomplete image. In: CVPR, pp. 8748–8758 (2023). https://doi.org/10.1109/CVPR52729.2023.00845

  216. Xiang, T., Sun, A., Wu, J., Adeli, E., Fei-Fei, L.: Rendering Humans from object-occluded monocular videos. In: ICCV, pp. 3216–3227 (2023). https://doi.org/10.1109/ICCV51070.2023.00300

  217. Ye, J., Zhang, Z., Jiang, Y., Liao, Q., Yang, W., Lu, Z.: OccGaussian: 3D Gaussian splatting for occluded human rendering (2024). arXiv preprint arXiv:2404.08449

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 62471168, 61802100 and 62372147). This work was also supported by the Zhejiang Provincial Natural Science Foundation of China (No. LDT23F02025F02, No.LY21F020019 and No. LY22F020028) and the Open Project Program of the State Key Laboratory of CAD &CG (No. A2314, No. A2304 and A2306), Zhejiang University. This work was also partially supported by Aeronautical Science Foundation of China (No. 2022Z0710T5001).

Author information

Authors and Affiliations

Authors

Contributions

SY and XG wrote the main manuscript text and SY prepared all figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaoling Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Gu, X., Kuang, Z. et al. Innovative AI techniques for photorealistic 3D clothed human reconstruction from monocular images or videos: a survey. Vis Comput (2024). https://doi.org/10.1007/s00371-024-03641-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-024-03641-7

Keywords

Navigation