Abstract
The emergence of 3D Gaussian splatting (3DGS) has greatly accelerated rendering in novel view synthesis. Unlike neural implicit representations like neural radiance fields (NeRFs) that represent a 3D scene with position and viewpoint-conditioned neural networks, 3D Gaussian splatting utilizes a set of Gaussian ellipsoids to model the scene so that efficient rendering can be accomplished by rasterizing Gaussian ellipsoids into images. Apart from fast rendering, the explicit representation of 3D Gaussian splatting also facilitates downstream tasks like dynamic reconstruction, geometry editing, and physical simulation. Considering the rapid changes and growing number of works in this field, we present a literature review of recent 3D Gaussian splatting methods, which can be roughly classified by functionality into 3D reconstruction, 3D editing, and other downstream applications. Traditional point-based rendering methods and the rendering formulation of 3D Gaussian splatting are also covered to aid understanding of this technique. This survey aims to help beginners to quickly get started in this field and to provide experienced researchers with a comprehensive overview, aiming to stimulate future development of the 3D Gaussian splatting representation.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
Availability of data and materials
As the paper does not involve the generation or analysis of specific datasets, there is no associated data or materials.
References
Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.; Ramamoorthi, R.; Ng, R. NeRF: Representing scenes as neural radiance fields for view synthesis. In: Computer Vision–ECCV 2020. Lecture Notes in Computer Science, Vol. 12346. Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J-M. Eds. Springer Cham, 405–421, 2020.
Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant neural graphics primitives with a multiresolution hash encoding. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 102, 2022.
Chen, Z.; Funkhouser, T.; Hedman, P.; Tagliasacchi, A. MobileNeRF: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16569–16578, 2023.
Yariv, L.; Hedman, P.; Reiser, C.; Verbin, D.; Srinivasan, P. P.; Szeliski, R.; Barron, J. T.; Mildenhall, B. BakedSDF: Meshing neural SDFs for real-time view synthesis. In: Proceedings of the SIGGRAPH Conference, Article No. 46, 2023.
Kerbl, B.; Kopanas, G.; Leimkuehler, T.; Drettakis, G. 3D Gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics Vol. 42, No. 4. Article No. 139, 2023.
Luiten, J.; Kopanas, G.; Leibe, B.; Ramanan, D. Dynamic 3D Gaussians: Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.
Yang, Z.; Gao, X.; Zhou, W.; Jiao, S.; Zhang, Y.; Jin, X. Deformable 3D Gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint arXiv:2309.13101, 2023.
Tang, J.; Ren, J.; Zhou, H.; Liu, Z.; Zeng, G. DreamGaussian: Generative Gaussian splatting for efficient 3D content creation. arXiv preprint arXiv:2309.16653, 2023.
Xie, T.; Zong, Z.; Qiu, Y.; Li, X.; Feng, Y.; Yang, Y.; Jiang, C. PhysGaussian: Physics-integrated 3D Gaussians for generative dynamics. arXiv preprint arXiv:2311.12198, 2023.
Guédon, A.; Lepetit, V. SuGaR: Surface-aligned Gaussian splatting for efficient 3D mesh reconstruction and high-quality mesh rendering. arXiv preprint arXiv:2311.12775, 2023.
Gao, J.; Gu, C.; Lin, Y.; Zhu, H.; Cao, X.; Zhang, L.; Yao, Y. Relightable 3D Gaussian: Real-time point cloud relighting with BRDF decomposition and ray tracing. arXiv preprint arXiv:2311.16043, 2023.
Jiang, Y.; Tu, J.; Liu, Y.; Gao, X.; Long, X.; Wang, W.; Ma, Y. GaussianShader: 3D Gaussian splatting with shading functions for reflective surfaces. arXiv preprint arXiv:2311.17977, 2023.
Zheng, S.; Zhou, B.; Shao, R.; Liu, B.; Zhang, S.; Nie, L.; Liu, Y. GPS-Gaussian: Generalizable pixel-wise 3D Gaussian splatting for real-time human novel view synthesis. arXiv preprint arXiv:2312.02155, 2023.
Zou, Z. X.; Yu, Z.; Guo, Y. C.; Li, Y.; Liang, D.; Cao, Y. P.; Zhang, S. H. Triplane meets Gaussian splatting: Fast and generalizable single-view 3D reconstruction with transformers. arXiv preprint arXiv:2312.09147, 2023.
Ren, J.; Pan, L.; Tang, J.; Zhang, C.; Cao, A.; Zeng, G.; Liu, Z. DreamGaussian4D: Generative 4D Gaussian splatting. arXiv preprint arXiv:2312.17142, 2023.
Huang, Y. H.; Sun, Y. T.; Yang, Z.; Lyu, X.; Cao, Y. P.; Qi, X. SC-GS: Sparse-controlled Gaussian splatting for editable dynamic scenes. arXiv preprint arXiv:2312.14937, 2023.
Jiang, Y.; Yu, C.; Xie, T.; Li, X.; Feng, Y.; Wang, H.; Li, M.; Lau, H.; Gao, F.; Yang, Y.; et al. VR-GS: A physical dynamics-aware interactive Gaussian splatting system in virtual reality. arXiv preprint arXiv:2401.16663, 2024.
Waczyńska, J.; Borycki, P.; Tadeja, S.; Tabor, J.; Spurek, P. GaMeS: Mesh-based adapting and modification of Gaussian splatting. arXiv preprint arXiv:2402.01459, 2024.
Gao, L.; Yang, J.; Zhang, B. T.; Sun, J. M.; Yuan, Y. J.; Fu, H.; Lai, Y. K. Mesh-based Gaussian splatting for real-time large-scale deformation. arXiv preprint arXiv:2402.04796, 2024.
Cheng, K.; Long, X.; Yang, K.; Yao, Y.; Yin, W.; Ma, Y.; Wang, W.; Chen, X. GaussianPro: 3D Gaussian splatting with progressive propagation. arXiv preprint arXiv:2402.14650, 2024.
Huang, B.; Yu, Z.; Chen, A.; Geiger, A.; Gao, S. 2D Gaussian splatting for geometrically accurate radiance fields. arXiv preprint arXiv:2403.17888, 2024.
Yu, Z.; Sattler, T.; Geiger, A. Gaussian opacity fields: Efficient and compact surface reconstruction in unbounded scenes. arXiv preprint arXiv:2404.10772, 2024.
Chen, G.; Wang, W. A survey on 3D Gaussian splatting. arXiv preprint arXiv:2401.03890, 2024.
Fei, B.; Xu, J.; Zhang, R.; Zhou, Q.; Yang, W.; He, Y. 3D Gaussian as a new vision era: A survey. arXiv preprint arXiv:2402.07181, 2024.
Grossman, J. P.; Dally, W. J. Point sample rendering. In: Rendering Techniques’ 98. Eurographics Workshop on Rendering Techniques. Drettakis, G.; Max, N. Eds. Springer Cham, 181–192, 1998.
Zwicker, M.; Pfister, H.; van Baar, J.; Gross, M. Surface splatting. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 371–378, 2001.
Zwicker, M.; Pfister, H.; van Baar, J.; Gross, M. EWA volume splatting. In: Proceedings of the Visualization, 29–538, 2001.
Botsch, M.; Wiratanaya, A.; Kobbelt, L. Efficient high quality rendering of point sampled geometry. In: Proceedings of the 13th Eurographics Workshop on Rendering, 53–64, 2002.
Botsch, M.; Kobbelt, L. High-quality point-based rendering on modern GPUs. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, 335–343, 2003.
Rusinkiewicz, S.; Levoy, M. QSplat: A multiresolution point rendering system for large meshes. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 343–352, 2000.
Kobbelt, L.; Botsch, M. A survey of point-based techniques in computer graphics. Computers & Graphics Vol. 28, No. 6, 801–814, 2004.
Chen, Z.; Zhang, H. Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5939–5948, 2019.
Park, J. J.; Florence, P.; Straub, J.; Newcombe, R.; Lovegrove, S. DeepSDF: Learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 165–174, 2019.
Mescheder, L.; Oechsle, M.; Niemeyer, M.; Nowozin, S.; Geiger, A. Occupancy networks: Learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4455–4465, 2019.
Yu, Z.; Chen, A.; Huang, B.; Sattler, T.; Geiger, A. Mip-splatting: Alias-free 3D Gaussian splatting. arXiv preprint arXiv:2311.16493, 2023.
Yan, Z.; Low, W. F.; Chen, Y.; Lee, G. H. Multi-scale 3D Gaussian splatting for anti-aliased rendering. arXiv preprint arXiv:2311.17089, 2023.
Liang, Z.; Zhang, Q.; Hu, W.; Feng, Y.; Zhu, L.; Jia, K. Analytic-splatting: Anti-aliased 3D Gaussian splatting via analytic integration. arXiv preprint arXiv:2403.11056, 2024.
Song, X.; Zheng, J.; Yuan, S.; Gao, H.; Zhao, J.; He, X.; Gu, W.; Zhao, H. SA-GS: Scale-adaptive Gaussian splatting for training-free anti-aliasing. arXiv preprint arXiv:2403.19615, 2024.
Malarz, D.; Smolak, W.; Tabor, J.; Tadeja, S.; Spurek, P. Gaussian splatting with NeRF-based color and opacity. arXiv preprint arXiv:2312.13729, 2023.
Lu, T.; Yu, M.; Xu, L.; Xiangli, Y.; Wang, L.; Lin, D.; Dai, B. Scaffold-GS: Structured 3D Gaussians for view-adaptive rendering. arXiv preprint arXiv:2312.13729, 2023.
Ren, K.; Jiang, L.; Lu, T.; Yu, M.; Xu, L.; Ni, Z.; Dai, B. Octree-GS: Towards consistent real-time rendering with LOD-structured 3D Gaussians. arXiv preprint arXiv:2403.17898, 2024.
Radl, L.; Steiner, M.; Parger, M.; Weinrauch, A.; Kerbl, B.; Steinberger, M. Stop ThePop: Sorted Gaussian splatting for view-consistent real-time rendering. arXiv preprint arXiv:2402.00525, 2024.
Li, Y.; Lyu, C.; Di, Y.; Zhai, G.; Lee, G. H.; Tombari, F. GeoGaussian: Geometry-aware Gaussian splatting for scene rendering. arXiv preprint arXiv:2403.11324, 2024.
Niemeyer, M.; Manhardt, F.; Rakotosaona, M. J.; Oechsle, M.; Duckworth, D.; Gosula, R.; Tateno, K.; Bates, J.; Kaeser, D.; Tombari, F. RadSplat: Radiance field-informed Gaussian splatting for robust real-time rendering with 900+ FPS. arXiv preprint arXiv:2403.13806, 2024.
Yang, Z.; Gao, X.; Sun, Y.; Huang, Y.; Lyu, X.; Zhou, W.; Jiao, S.; Qi, X.; Jin, X. Spec-Gaussian: Anisotropic view-dependent appearance for 3D Gaussian splatting. arXiv preprint arXiv:2402.15870, 2024.
Franke, L.; Rückert, D.; Fink, L.; Stamminger, M. TRIPS: Trilinear point splatting for real-time radiance field rendering, Computer Graphics Forum Vol 43, No. 2, e15012, 2024.
Rückert, D.; Franke, L.; Stamminger, M. ADOP: Approximate differentiable one-pixel point rendering. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 99, 2022.
Zhang, J.; Zhan, F.; Xu, M.; Lu, S.; Xing, E. FreGS: 3D Gaussian splatting with progressive frequency regularization. arXiv preprint arXiv:2403.06908, 2024.
Hamdi, A.; Melas-Kyriazi, L.; Qian, G.; Mai, J.; Liu, R.; Vondrick, C.; Ghanem, B.; Vedaldi, A. GES: Generalized exponential splatting for efficient radiance field rendering. arXiv preprint arXiv:2402.10128, 2024.
Jung, J.; Han, J.; An, H.; Kang, J.; Park, S.; Kim, S. Relaxing accurate initialization constraint for 3D Gaussian splatting. arXiv preprint arXiv:2403.09413, 2024.
Zhang, Z.; Hu, W.; Lao, Y.; He, T.; Zhao, H. Pixel-GS: Density control with pixel-aware gradient for 3D Gaussian splatting. arXiv preprint arXiv:2403.15530, 2024.
Bulò, S. R.; Porzi, L.; Kontschieder, P. Revising densification in Gaussian splatting. arXiv preprint arXiv:2404.06109, 2024.
Barron, J. T.; Mildenhall, B.; Verbin, D.; Srinivasan, P. P.; Hedman, P. Mip-NeRF 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5470–5479, 2022.
Barron, J. T.; Mildenhall, B.; Tancik, M.; Hedman, P.; Martin-Brualla, R.; Srinivasan, P. P. Mip-NeRF: A multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5855–5864, 2021.
Barron, J. T.; Mildenhall, B.; Verbin, D.; Srinivasan, P. P.; Hedman, P. Zip-NeRF: Anti-aliased grid-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 19697–19705, 2023.
Lee, J. C.; Rho, D.; Sun, X.; Ko, J. H.; Park, E. Compact 3D Gaussian representation for radiance field. arXiv preprint arXiv:2311.13681, 2024.
Navaneet, K.; Meibodi, K. P.; Koohpayegani, S. A.; Pirsiavash, H. Compact3D: Compressing Gaussian splat radiance field models with vector quantization. arXiv preprint arXiv:2311.18159, 2023.
Niedermayr, S.; Stumpfegger, J.; Westermann, R. Compressed 3D Gaussian splatting for accelerated novel view synthesis. arXiv preprint arXiv:2401.02436, 2023.
Girish, S.; Gupta, K.; Shrivastava, A. EAGLES: Efficient accelerated 3D Gaussians with lightweight EncodingS. arXiv preprint arXiv:2312.04564, 2023.
Fan, Z.; Wang, K.; Wen, K.; Zhu, Z.; Xu, D.; Wang, Z. LightGaussian: Unbounded 3D Gaussian compression with 15x reduction and 200+ FPS. arXiv preprint arXiv:2311.17245, 2023.
Zeghidour, N.; Luebs, A.; Omran, A.; Skoglund, J.; Tagliasacchi, M. SoundStream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and Language Processing Vol. 30, 495–507, 2023.
MPEGGroup. mpeg-pcc-tmc13. Available at https://github.com/MPEGGroup/mpeg-pcc-tmc13
Fang, G.; Wang, B. Mini-Splatting: Representing scenes with a constrained number of Gaussians. arXiv preprint arXiv:2403.14166, 2024.
Morgenstern, W.; Barthel, F.; Hilsmann, A.; Eisert, P. Compact 3D scene representation via self-organizing Gaussian grids. arXiv preprint arXiv:2312.13299, 2023.
Chen, Y.; Wu, Q.; Cai, J.; Harandi, M.; Lin, W. HAC: Hash-grid assisted context for 3D Gaussian splatting compression. arXiv preprint arXiv:2403.14530, 2024.
Jo, J.; Kim, H.; Park, J. Identifying unnecessary 3D Gaussians using clustering for fast rendering of 3D Gaussian splatting. arXiv preprint arXiv:2402.13827, 2024.
Zhang, X.; Ge, X.; Xu, T.; He, D.; Wang, Y.; Qin, H.; Lu, G.; Geng, J.; Zhang, J. GaussianImage: 1000 FPS image representation and compression by 2D Gaussian splatting. arXiv preprint arXiv:2403.08551, 2024.
Pumarola, A.; Corona, E.; Pons-Moll, G.; Moreno-Noguer, F. D-NeRF: Neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10318–10327, 2021.
Wu, G.; Yi, T.; Fang, J.; Xie, L.; Zhang, X.; Wei, W.; Liu, W.; Tian, Q.; Wang, X. 4D Gaussian splatting for real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528, 2023.
Cao, A.; Johnson, J. HexPlane: A fast representation for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 130–141, 2023.
Liang, Y.; Khan, N.; Li, Z.; Nguyen-Phuoc, T.; Lanman, D.; Tompkin, J.; Xiao, L. GauFRe: Gaussian deformation fields for real-time dynamic novel view synthesis. arXiv preprint arXiv:2312.11458, 2023.
Sun, J.; Jiao, H.; Li, G.; Zhang, Z.; Zhao, L.; Xing, W. 3DGStream: On-the-fly training of 3D Gaussians for efficient streaming of photo-realistic free-viewpoint videos. arXiv preprint arXiv:2403.01444, 2024.
Duan, Y.; Wei, F.; Dai, Q.; He, Y.; Chen, W.; Chen, B. 4D Gaussian splatting: Towards efficient novel view synthesis for dynamic scenes. arXiv preprint arXiv:2402.03307, 2024.
Liu, I.; Su, H.; Wang, X. Dynamic Gaussians mesh: Consistent mesh reconstruction from monocular videos. arXiv preprint arXiv:2404.12379, 2024.
Guo, Z.; Zhou, W.; Li, L.; Wang, M.; Li, H. Motion-aware 3D Gaussian splatting for efficient dynamic scene reconstruction. arXiv preprint arXiv:2403.11447, 2024.
Gao, Q.; Xu, Q.; Cao, Z.; Mildenhall, B.; Ma, W.; Chen, L.; Tang, D.; Neumann, U. GaussianFlow: Splatting Gaussian dynamics for 4D content creation. arXiv preprint arXiv:2403.12365, 2024.
Zhang, S.; Zhao, H.; Zhou, Z.; Wu, G.; Zheng, C.; Wang, X.; Liu, W. TOGS: Gaussian splatting with temporal opacity offset for real-time 4D DSA rendering. arXiv preprint arXiv:2403.19586, 2024.
Zhang, T.; Gao, Q.; Li, W.; Liu, L.; Chen, B. BAGS: Building animatable Gaussian splatting from a monocular video with diffusion priors. arXiv preprint arXiv:2403.11427, 2024.
Katsumata, K.; Vo, D. M.; Nakayama, H. An efficient 3D Gaussian representation for monocular/multi-view dynamic scenes. arXiv preprint arXiv:2311.12897, 2023.
Lin, Y.; Dai, Z.; Zhu, S.; Yao, Y. Gaussian-flow: 4D reconstruction with dynamic 3D Gaussian particle. arXiv preprint arXiv:2312.03431, 2023.
Li, Z.; Chen, Z.; Li, Z.; Xu Y. Spacetime Gaussian feature splatting for real-time dynamic view synthesis. arXiv preprint arXiv:2312.16812, 2023.
Kratimenos, A.; Lei, J.; Daniilidis, K. DynMF: Neural motion factorization for real-time dynamic view synthesis with 3D Gaussian splatting. arXiv preprint arXiv:2312.00112, 2023.
Fang, J.; Yi, T.; Wang, X.; Xie, L.; Zhang, X.; Liu, W.; Nießner, M.; Tian, Q. Fast dynamic radiance fields with time-aware neural voxels. In: Proceedings of the SIGGRAPH Asia Conference Papers, Article No. 11, 2022.
Shao, R.; Zheng, Z.; Tu, H.; Liu, B.; Zhang, H.; Liu, Y. Tensor4D: Efficient neural 4D decomposition for high-fidelity dynamic reconstruction and rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16632–16642, 2023.
Fridovich-Keil, S.; Meanti, G.; Warburg, F. R.; Recht, B.; Kanazawa, A. K-planes: Explicit radiance fields in space, time, and appearance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12479–12488, 2023.
Yu, H.; Julin, J.; Milacski, Z. A.; Niinuma, K.; Jeni, L. A. CoGS: Controllable Gaussian splatting. arXiv preprint arXiv:2312.05664, 2024.
Yang, Z.; Yang, H.; Pan, Z.; Zhang, L. Realtime photorealistic dynamic scene representation and rendering with 4D Gaussian splatting. arXiv preprint arXiv:2310.10642, 2023.
Shaw, R.; Song, J.; Moreau, A.; Nazarczuk, M.; Catley-Chandar, S.; Dhamo, H.; Perez-Pellitero, E. SWAGS: Sampling windows adaptively for dynamic 3D Gaussian splatting. arXiv preprint arXiv:2312.13308, 2023.
Maggioni, M.; Tanay, T.; Babiloni, F.; McDonagh, S.; Leonardis, A. Tunable convolutions with parametric multi-loss optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 20226–20236, 2023.
Cotton, R. J.; Peyton, C. Dynamic Gaussian splatting from markerless motion capture reconstruct infants movements. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, 60–68, 2024.
Zhu, L.; Wang, Z.; Cui, J.; Jin, Z.; Lin, G.; Yu, L. EndoGS: Deformable endoscopic tissues reconstruction with Gaussian splatting. arXiv preprint arXiv:2401.11535, 2024.
Chen, Y.; Wang, H. EndoGaussians: Single view dynamic Gaussian splatting for deformable endoscopic tissues reconstruction. arXiv preprint arXiv:2401.13352, 2024.
Huang, Y.; Cui, B.; Bai, L.; Guo, Z.; Xu, M.; Islam, M.; Ren, H. Endo-4DGS: Endoscopic monocular scene reconstruction with 4D Gaussian splatting. arXiv preprint arXiv:2401.16416, 2024.
Wang, K.; Yang, C.; Wang, Y.; Li, S.; Wang, Y.; Dou, Q.; Yang, X.; Shen, W. EndoGSLAM: Realtime dense reconstruction and tracking in endoscopic surgeries using Gaussian platting. arXiv preprint arXiv:2403.15124, 2024.
Zhu, Z.; Fan, Z.; Jiang, Y.; Wang, Z. FSGS: Realtime few-shot view synthesis using Gaussian splatting. arXiv preprint arXiv:2312.00451, 2023.
Xiong, H.; Muttukuru, S.; Upadhyay, R.; Chari, P.; Kadambi, A. SparseGS: Real-time 360° sparse view synthesis using Gaussian splatting. arXiv preprint arXiv:2312.00206, 2023.
Paliwal, A.; Ye, W.; Xiong, J.; Kotovenko, D.; Ranjan, R.; Chandra, V.; Kalantari, N. K. CoherentGS: Sparse novel view synthesis with coherent 3D Gaussians. arXiv preprint arXiv:2403.19495, 2024.
Li, J.; Zhang, J.; Bai, X.; Zheng, J.; Ning, X.; Zhou, J.; Gu, L. DNGaussian: Optimizing sparse-view 3D Gaussian radiance fields with global-local depth normalization. arXiv preprint arXiv:2403.06912, 2024.
Poole, B.; Jain, A.; Barron, J. T.; Mildenhall, B.; Feng, L.; Wang, M.; Wang, M.; Xu, K.; Liu, X. DreamFusion: Text-to-3D using 2D diffusion. arXiv preprint arXiv:2209.14988, 2022.
Yang, C.; Li, S.; Fang, J.; Liang, R.; Xie, L.; Zhang, X.; Shen, W.; Tian, Q. GaussainObject: Just taking four images to get a high-quality 3D object with Gaussian splatting. arXiv preprint arXiv:2402.10259, 2024.
Zhang, L.; Rao, A.; Agrawala, M. Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 3813–3824, 2023.
Charatan, D.; Li, S.; Tagliasacchi, A.; Sitzmann, V. pixelSplat: 3D Gaussian splats from image pairs for scalable generalizable 3D reconstruction. arXiv preprint arXiv:2312.12337, 2023.
Yu, A.; Ye, V.; Tancik, M.; Kanazawa, A. pixelNeRF: Neural radiance fields from one or few images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4578–4587, 2021.
Chen, Y.; Xu, H.; Zheng, C.; Zhuang, B.; Pollefeys, M.; Geiger, A.; Cham, T. J.; Cai, J. MVSplat: Efficient 3D Gaussian splatting from sparse multiview images. arXiv preprint arXiv:2403.14627, 2024.
Szymanowicz, S.; Rupprecht, C.; Vedaldi, A. Splatter image: Ultra-fast single-view 3D reconstruction. arXiv preprint arXiv:2312.13150, 2023.
Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597, 2015.
Chen, Y.; Gu, C.; Jiang, J.; Zhu, X.; Zhang, L. Periodic vibration Gaussian: Dynamic urban scene reconstruction and realtime rendering. arXiv preprint arXiv:2311.18561, 2023.
Zhou, X.; Lin, Z.; Shan, X.; Wang, Y.; Sun, D.; Yang, M. DrivingGaussian: Composite Gaussian splatting for surrounding dynamic autonomous driving scenes. arXiv preprint arXiv:2312.07920, 2023.
Zhou, H.; Shao, J.; Xu, L.; Bai, D.; Qiu, W.; Liu, B.; Wang, Y.; Geiger, A.; Liao, Y. HUGS: Holistic urban 3D scene understanding via Gaussian splatting. arXiv preprint arXiv:2403.12722, 2024.
Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A. C.; Lo, W. Y.; et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.
Yan, Y.; Lin, H.; Zhou, C.; Wang, W.; Sun, H.; Zhan, K.; Lang, X.; Zhou, X.; Peng, S. Street Gaussians for modeling dynamic urban scenes. arXiv preprint arXiv:2401.01339, 2024.
Yu, Z.; Wang, H.; Yang, J.; Wang, H.; Xie, Z.; Cai, Y.; Cao, J.; Ji, Z.; Sun, M. SGD: Street view synthesis with Gaussian splatting and diffusion prior. arXiv preprint arXiv:2403.20079, 2024.
Wu, R.; Mildenhall, B.; Henzler, P.; Park, K.; Gao, R.; Watson, D.; Srinivasan, P. P.; Verbin, D.; Barron, J. T.; Poole, B.; Holynski, A. ReconFusion: 3D reconstruction with diffusion priors. arXiv preprint arXiv:2312.02981, 2023.
Wu, K.; Zhang, K.; Zhang, Z.; Yuan, S.; Tie, M.; Wei, J.; Xu, Z.; Zhao, J.; Gan, Z.; Ding, W. HGS-mapping: Online dense mapping using hybrid Gaussian representation in urban scenes. arXiv preprint arXiv:2403.20159, 2024.
Lin, J.; Li, Z.; Tang, X.; Liu, J.; Liu, S.; Liu, J.; Lu, Y.; Wu, X.; Xu, S.; Yan, Y.; Yang, W. VastGaussian: Vast 3D Gaussians for large scene reconstruction. arXiv preprint arXiv:2402.17427, 2024.
Liu, Y.; Guan, H.; Luo, C.; Fan, L.; Peng, J.; Zhang, Z. CityGaussian: Real-time high-quality large-scale scene rendering with Gaussians. arXiv preprint arXiv:2404.01133, 2024.
Xiong, B.; Li, Z.; Li, Z. GauU-scene: A scene reconstruction benchmark on large scale 3D reconstruction dataset using Gaussian splatting. arXiv preprint arXiv:2401.14032, 2024.
Fu, Y.; Liu, S.; Kulkarni, A.; Kautz, J.; Efros, A. A.; Wang, X. COLMAP-free 3D Gaussian splatting. arXiv preprint arXiv:2312.07504, 2023.
Sun, Y.; Wang, X.; Zhang, Y.; Zhang, J.; Jiang, C.; Guo, Y.; Wang, F. iComMa: Inverting 3D Gaussians splatting for camera pose estimation via comparing and matching. arXiv preprint arXiv:2312.09031, 2023.
Fan, Z.; Cong, W.; Wen, K.; Wang, K.; Zhang, J.; Ding, X.; Xu, D.; Ivanovic, B.; Pavone, M.; Pavlakos, G.; Wang, Z.; Wang, Y. InstantSplat: Unbounded sparse-view pose-free Gaussian splatting in 40 seconds. arXiv preprint arXiv:2403.20309, 2024.
Li, H.; Gao, Y.; Wu, C.; Zhang, D.; Dai, Y.; Zhao, C.; Feng, H.; Ding, E.; Wang, J.; Han, J. GGRt: Towards pose-free generalizable 3D Gaussian splatting in realtime. arXiv preprint arXiv:2403.10147, 2024.
Lee, B.; Lee, H.; Sun, X.; Ali, U.; Park, E. Deblurring 3D Gaussian splatting. arXiv preprint arXiv:2401.00834, 2024.
Peng, C.; Tang, Y.; Zhou, Y.; Wang, N.; Liu, X.; Li, D.; Chellappa, R. BAGS: Blur agnostic Gaussian splatting through multi-scale kernel modeling. arXiv preprint arXiv:2403.04926, 2024.
Zhao, L.; Wang, P.; Liu, P. BAD-Gaussians: Bundle adjusted deblur Gaussian splatting. arXiv preprint arXiv:2403.11831, 2024.
Seiskari, O.; Ylilammi, J.; Kaatrasalo, V.; Rantalankila, P.; Turkulainen, M.; Kannala, J.; Rahtu, E.; Solin, A. Gaussian splatting on the move: Blur and rolling shutter compensation for natural camera motion. arXiv preprint arXiv:2403.13327, 2024.
Dahmani, H.; Bennehar, M.; Piasco, N.; Roldao, L.; Tsishkou, D. SWAG: Splatting in the wild images with appearance-conditioned Gaussians. arXiv preprint arXiv:2403.10427, 2024.
Zhang, D.; Wang, C.; Wang, W.; Li, P.; Qin, M.; Wang, H. Gaussian in the wild: 3D Gaussian splatting for unconstrained image collections. arXiv preprint arXiv:2403.15704, 2024.
Meng, J.; Li, H.; Wu, Y.; Gao, Q.; Yang, S.; Zhang, J.; Ma, S. Mirror-3DGS: Incorporating mirror teflections into 3D Gaussian splatting. arXiv preprint arXiv:2404.01168, 2024.
Comi, M.; Tonioni, A.; Yang, M.; Tremblay, J.; Blukis, V.; Lin, Y.; Lepora, N. F.; Aitchison, L. Snap-it, tapit, splat-it: Tactile-informed 3D Gaussian splatting for reconstructing challenging surfaces. arXiv preprint arXiv:2403.20275, 2024.
Li, Y.; Fu, X.; Zhao, S.; Jin, R.; Zhou, S. K. Sparse-view CT reconstruction with 3D Gaussian volumetric representation. arXiv preprint arXiv:2312.15676, 2023.
Cai, Y.; Liang, Y.; Wang, J.; Wang, A.; Zhang, Y.; Yang, X.; Zhou, Z.; Yuille, A. Radiative Gaussian splatting for efficient X-ray novel view synthesis. arXiv preprint arXiv:2403.04116, 2024.
Bai, J.; Huang, L.; Guo, J.; Gong, W.; Li, Y.; Guo, Y. 360-GS: Layout-guided panoramic Gaussian splatting for indoor roaming. arXiv preprint arXiv:2402.00763, 2024.
Nguyen, V. M.; Sandidge, E.; Mahendrakar, T.; White, R. T. Characterizing satellite geometry via accelerated 3D Gaussian splatting. Aerospace Vol. 11, No. 3, Article No. 183, 2024.
Chen, Y.; Chen, Z.; Zhang, C.; Wang, F.; Yang, X.; Wang, Y.; Cai, Z.; Yang, L.; Liu, H.; Lin, G. GaussianEditor: Swift and controllable 3D editing with Gaussian splatting. arXiv preprint arXiv:2311.14521, 2023.
Ye, M.; Danelljan, M.; Yu, F.; Ke, L. Gaussian grouping: Segment and edit anything in 3D scenes. arXiv preprint arXiv:2312.00732, 2023.
Huang, J.; Yu, H. Point’n Move: Interactive scene object manipulation on Gaussian splatting radiance fields. arXiv preprint arXiv:2311.16737, 2023.
Feng, Q.; Cao, G.; Chen, H.; Mu, T. J.; Martin, R. R.; Hu, S. M. A new split algorithm for 3D Gaussian splatting. arXiv preprint arXiv:2403.09143, 2024.
Guédon, A.; Lepetit, V. Gaussian frosting: Editable complex radiance fields with real-time rendering. arXiv preprint arXiv:2403.14554, 2024.
Fang, J.; Wang, J.; Zhang, X.; Xie, L.; Tian, Q. GaussianEditor: Editing 3D Gaussians delicately with text instructions. arXiv preprint arXiv:2311.16037, 2023.
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10674–10685, 2022.
Haque, A.; Tancik, M.; Efros, A. A.; Holynski, A.; Kanazawa, A. Instruct-NeRF2NeRF: Editing 3D scenes with instructions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 19683–19693, 2023.
Palandra, F.; Sanchietti, A.; Baieri, D.; Rodolà, E. GSEdit: Efficient text-guided editing of 3D objects via gaussian splatting. arXiv preprint arXiv:2403.05154, 2024.
Brooks, T.; Holynski, A.; Efros, A. A. Instruct-Pix2Pix: Learning to follow image editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18392–18402, 2023.
Wu, J.; Bian, J. W.; Li, X.; Wang, G.; Reid, I.; Torr, P.; Prisacariu, V. A. GaussCtrl: Multi-view consistent text-driven 3D Gaussian splatting editing. arXiv preprint arXiv:2403.08733, 2024.
Wang, Y.; Yi, X.; Wu, Z.; Zhao, N.; Chen, L.; Zhang, H. View-consistent 3D editing with Gaussian splatting. arXiv preprint arXiv:2403.11868, 2024.
Xu, T. X.; Hu, W.; Lai, Y. K.; Shan, Y.; Zhang, S. H. Texture-GS: Disentangling the geometry and texture for 3D Gaussian splatting editing. arXiv preprint arXiv:2403.10050, 2024.
Wang, X. E.; Sin, Z. P. T. 3D Gaussian model for animation and texturing. arXiv preprint arXiv:2402.19441, 2024.
Liu, K.; Zhan, F.; Xu, M.; Theobalt, C.; Shao, L.; Lu, S. Style-Gaussian: Instant 3D style transfer with Gaussian splatting. arXiv preprint arXiv:2403.07807, 2024.
Saroha, A.; Gladkova, M.; Curreli, C.; Yenamandra, T.; Cremers, D. Gaussian splatting in style. arXiv preprint arXiv:2403.08498, 2024.
Zhang, D.; Chen, Z.; Yuan, Y. J.; Zhang, F. L.; He, Z.; Shan, S.; Gao, L. StylizedGS: Controllable stylization for 3D Gaussian splatting. arXiv preprint arXiv:2404.05220, 2024.
Liang, Z.; Zhang, Q.; Feng, Y.; Shan, Y.; Jia, K. GS-IR: 3D Gaussian splatting for inverse rendering. arXiv preprint arXiv:2311.16473, 2023.
Shi, Y.; Wu, Y.; Wu, C.; Liu, X.; Zhao, C.; Feng, H.; Liu, J.; Zhang, L.; Zhang, J.; Zhou, B.; et al. GIR: 3D Gaussian inverse rendering for relightable scene factorization. arXiv preprint arXiv:2312.05133, 2023.
Verbin, D.; Hedman, P.; Mildenhall, B.; Zickler, T.; Barron, J. T.; Srinivasan, P. P. Ref-NeRF: Structured view-dependent appearance for neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5481–5490, 2022.
Wu, T.; Sun, J. M.; Lai, Y. K.; Ma, Y.; Kobbelt, L.; Gao, L. DeferredGS: Decoupled and editable Gaussian splatting with deferred shading. arXiv preprint arXiv:2404.09412, 2024.
Bonet, J.; Wood, R. D. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge, UK: Cambridge University Press, 2008.
Feng, Y.; Feng, X.; Shang, Y.; Jiang, Y.; Yu, C.; Zong, Z.; Shao, T.; Wu, H.; Zhou, K.; Jiang, C.; et al. Gaussian splashing: Dynamic fluid synthesis with Gaussian splatting. arXiv preprint arXiv:2401.15318, 2024.
Macklin, M.; Muller, M.; Chentanez, N. XPBD: Position-based simulation of compliant constrained dynamics. In: Proceedings of the 9th International Conference on Motion in Games, 49–54, 2016.
Zhong, L.; Yu, H. X.; Wu, J.; Li, Y. Reconstruction and simulation of elastic objects with spring-mass 3D Gaussians. arXiv preprint arXiv:2403.09434, 2024.
Qiu, R. Z.; Yang, G.; Zeng, W.; Wang, X. Feature splatting: Language-driven physics-based scene synthesis and editing. arXiv preprint arXiv:2404.01223, 2024.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. In: Proceedings of the International conference on Machine Learning, 8748–8763, 2021.
Caron, M.; Touvron, H.; Misra, I.; Jegou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 9650–9660, 2021.
Cen, J.; Fang, J.; Yang, C.; Xie, L.; Zhang, X.; Shen, W.; Tian, Q. Segment any 3D Gaussians. arXiv preprint arXiv:2312.00860, 2023.
Zhou, S.; Chang, H.; Jiang, S.; Fan, Z.; Zhu, Z.; Xu, D.; Chari, P.; You, S.; Wang, Z.; Kadambi, A. Feature 3DGS: Supercharging 3D Gaussian splatting to enable distilled feature field. arXiv preprint arXiv:2312.03203, 2023.
Qin, M.; Li, W.; Zhou, J.; Wang, H.; Pfister, H. LangSplat: 3D language Gaussian splatting. arXiv preprint arXiv:2312.16084, 2023.
Hu, X.; Wang, Y.; Fan, L.; Fan, J.; Peng, J.; Lei, Z.; Li, Q.; Zhang, Z. SAGD: Boundary-enhanced segment anything in 3D Gaussian via Gaussian decomposition. arXiv preprint arXiv:2401.17857, 2024.
Guo, J.; Ma, X.; Fan, Y.; Liu, H.; Li, Q. Semantic Gaussians: Open-vocabulary scene understanding with 3D Gaussian splatting. arXiv preprint arXiv:2403.15624, 2024.
Lyu, W.; Li, X.; Kundu, A.; Tsai, Y. H.; Yang, M. H. Gaga: Group any Gaussians via 3D-aware memory bank. arXiv preprint arXiv:2404.07977, 2024.
Shi, J. C.; Wang, M.; Duan, H. B.; Guan, S. H. Language embedded 3D Gaussians for open-vocabulary scene understanding. arXiv preprint arXiv:2311.18482, 2023.
Zuo, X.; Samangouei, P.; Zhou, Y.; Di, Y.; Li, M. FMGS: Foundation model embedded 3D Gaussian splatting for holistic 3D scene understanding. arXiv preprint arXiv:2401.01970, 2024.
Dou, B.; Zhang, T.; Ma, Y.; Wang, Z.; Yuan, Z. CoSSegGaussians: Compact and swift scene segmenting 3D Gaussians with dual feature fusion. arXiv preprint arXiv:2401.05925, 2024.
Wang, P.; Liu, L.; Liu, Y.; Theobalt, C.; Komura, T.; Wang, W. NeuS: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: Proceedings of the 35th Conference on Neural Information Processing Systems, 27171–27183, 2021.
Liu, Y. T.; Wang, L.; Yang, J.; Chen, W.; Meng, X.; Yang, B.; Gao, L. NeUDF: Leaning neural unsigned distance fields with volume rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 237–247, 2023.
Zhuang, Y.; Zhang, Q.; Feng, Y.; Zhu, H.; Yao, Y.; Li, X.; Cao, Y. P.; Shan, Y.; Cao, X. Anti-aliased neural implicit surfaces with encoding level of detail. In: Proceedings of the SIGGRAPH Asia Conference Papers, Article No. 119, 2023.
Ge, W.; Hu, T.; Zhao, H.; Liu, S.; Chen, Y. C. Ref-NeuS: Ambiguity-reduced neural implicit surface learning for multi-view reconstruction with reflection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 4228–4237, 2023.
Chen, H.; Li, C.; Lee, G. H. NeuSG: Neural implicit surface reconstruction with 3D Gaussian splatting guidance. arXiv preprint arXiv:2312.00846, 2023.
Lyu, X.; Sun, Y. T.; Huang, Y. H.; Wu, X.; Yang, Z.; Chen, Y.; Pang, J.; Qi, X. 3DGSR: Implicit surface reconstruction with 3D Gaussian splatting. arXiv preprint arXiv:2404.00409, 2024.
Yu, M.; Lu, T.; Xu, L.; Jiang, L.; Xiangli, Y.; Dai, B. GSDF: 3DGS meets SDF for improved rendering and reconstruction. arXiv preprint arXiv:2403.16964, 2024.
Turkulainen, M.; Ren, X.; Melekhov, I.; Seiskari, O.; Rahtu, E.; Kannala, J. DN-Splatter: Depth and normal priors for Gaussian splatting and meshing. arXiv preprint arXiv:2403.17822, 2024.
Wolf, Y.; Bracha, A.; Kimmel, R. Surface reconstruction from Gaussian splatting via novel stereo views. arXiv preprint arXiv:2403.17822, 2024.
Yan, C.; Qu, D.; Wang, D.; Xu, D.; Wang, Z.; Zhao, B.; Li, X. GSSLAM: Dense visual SLAM with 3D Gaussian splatting. arXiv preprint arXiv:2311.11700, 2023.
Keetha, N. V.; Karhade, J.; Jatavallabhula, K. M.; Yang, G.; Scherer, S. A.; Ramanan, D.; Luiten, J. SplaTAM: Splat, track & map 3D Gaussians for dense RGB-D SLAM. arXiv preprint arXiv:2312.02126, 2024.
Matsuki, H.; Murai, R.; Kelly, P. H. J.; Davison, A. J. Gaussian splatting SLAM. arXiv preprint arXiv:2312.06741, 2023.
Yugay, V.; Li, Y.; Gevers, T.; Oswald, M. R. Gaussian-SLAM: Photo-realistic dense SLAM with Gaussian splatting. arXiv preprint arXiv:2312.10070, 2023.
Hong, S.; He, J.; Zheng, X.; Zheng, C.; Shen, S. LIV-GaussMap: LiDAR-inertial-visual fusion for real-time 3D radiance field map rendering. arXiv preprint arXiv:2401.14857, 2024.
Li, M.; Liu, S.; Zhou, H. SGS-SLAM: Semantic Gaussian splatting for neural dense SLAM. arXiv preprint arXiv:2402.03246, 2024.
Ji, Y.; Liu, Y.; Xie, G.; Ma, B.; Xie, Z. NEDS-SLAM: A novel neural explicit dense semantic SLAM framework using 3D Gaussian splatting. arXiv preprint arXiv:2403.11679, 2024.
Zhu, S.; Qin, R.; Wang, G.; Liu, J.; Wang, H. SemGauss-SLAM: Dense semantic Gaussian splatting SLAM. arXiv preprint arXiv:2403.07494, 2024.
Deng, T.; Chen, Y.; Zhang, L.; Yang, J.; Yuan, S.; Wang, D.; Chen, W. Compact 3D Gaussian splatting for dense visual SLAM. arXiv preprint arXiv:2403.11247, 2024.
Hu, J.; Chen, X.; Feng, B.; Li, G.; Yang, L.; Bao, H.; Zhang, G.; Cui, Z. CG-SLAM: Efficient dense RGB-D SLAM in a consistent uncertainty-aware 3D Gaussian field. arXiv preprint arXiv:2403.16095, 2024.
Jiang, P.; Pandey, G.; Saripalli, S. 3DGS-ReLoc: 3D Gaussian splatting for map representation and visual ReLocalization. arXiv preprint arXiv:2403.11367, 2024.
Chen, T.; Shorinwa, O.; Zeng, W.; Bruno, J.; Dames, P.; Schwager, M. Splat-Nav: Safe real-time robot navigation in Gaussian splatting maps. arXiv preprint arXiv:2403.02751, 2024.
Lei, X.; Wang, M.; Zhou, W.; Li, H. GaussNav: Gaussian splatting for visual navigation. arXiv preprint arXiv:2403.11625, 2024.
Liu, G.; Jiang, W.; Lei, B.; Pandey, V.; Daniilidis, K.; Motee, N. Beyond uncertainty: Risk-aware active view acquisition for safe robot navigation and 3D scene understanding with FisherRF. arXiv preprint arXiv:2403.11396, 2024.
Cai, D.; Heikkilä, J.; Rahtu, E. GS-pose: Cascaded framework for generalizable segmentation-based 6D object pose estimation. arXiv preprint arXiv: 2403.11247, 2024.
Sun, L. C.; Bhatt, N. P.; Liu, J. C.; Fan, Z.; Wang, Z.; Humphreys, T. E.; Topcu, U. MM3DGS SLAM: Multi-modal 3D Gaussian splatting for SLAM using vision, depth, and inertial measurements. arXiv preprint arXiv:2404.00923, 2024.
Herau, Q.; Bennehar, M.; Moreau, A.; Piasco, N.; Roldao, L.; Tsishkou, D.; Migniot, C.; Vasseur, P.; Demonceaux, C. 3DGSCalib: 3D Gaussian splatting for multimodal spatiotemporal calibration. arXiv preprint arXiv:2403.11577, 2024.
Lu, G.; Zhang, S.; Wang, Z.; Liu, C.; Lu, J.; Tang, Y. ManiGaussian: Dynamic Gaussian splatting for multi-task robotic manipulation. arXiv preprint arXiv:2403.08321, 2024.
Zheng, Y.; Chen, X.; Zheng, Y.; Gu, S.; Yang, R.; Jin, B.; Li, P.; Zhong, C.; Wang, Z.; Liu, L.; et al. GaussianGrasper: 3D language Gaussian splatting for open-vocabulary robotic grasping. arXiv preprint arXiv:2403.09637, 2024.
Straub, J.; Whelan, T.; Ma, L.; Chen, Y.; Wijmans, E.; Green, S.; Engel, J. J.; Mur-Artal, R.; Ren, C. Y.; Verma, S.; et al. The replica dataset: A digital replica of indoor spaces. arXiv preprint arXiv:1906.05797, 2019.
Zhu, Z.; Peng, S.; Larsson, V.; Xu, W.; Bao, H.; Cui, Z.; Oswald, M. R.; Pollefeys, M. NICE-SLAM: Neural implicit scalable encoding for SLAM. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12776–12786, 2022.
Yang, X.; Li, H.; Zhai, H.; Ming, Y.; Liu, Y.; Zhang, G. Vox-fusion: Dense tracking and mapping with voxel-based neural implicit representation. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, 499–507, 2022.
Wang, H.; Wang, J.; Agapito, L. Co-SLAM: Joint coordinate and sparse parametric encodings for neural real-time SLAM. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13293–13302, 2023.
Zielonka, W.; Bagautdinov, T.; Saito, S.; Zollhöfer, M.; Thies, J.; Romero, J. Drivable 3D Gaussian avatars. arXiv preprint arXiv:2311.08581, 2023.
Jena, R.; Iyer, G. S.; Choudhary, S.; Smith, B.; Chaudhari, P.; Gee, J. SplatArmor: Articulated Gaussian splatting for animatable humans from monocular RGB videos. arXiv preprint arXiv: 2311.10812, 2023.
Moreau, A.; Song, J.; Dhamo, H.; Shaw, R.; Zhou, Y.; Perez-Pellitero, E. Human Gaussian splatting: Realtime rendering of animatable avatars. arXiv preprint arXiv:2311.17113, 2023.
Kocabas, M.; Chang, J. H R.; Gabriel, J.; Tuzel, O.; Ranjan, A. HUGS: Human Gaussian splats. arXiv preprint arXiv:2311.17910, 2023.
Chan, E. R.; Lin, C. Z.; Chan, M. A.; Nagano, K.; Pan, B.; de Mello, S.; Gallo, O.; Guibas, L.; Tremblay, J.; Khamis, S.; et al. Efficient geometry-aware 3D generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 16123–16133, 2022.
Jiang, Y.; Shen, Z.; Wang, P.; Su, Z.; Hong, Y.; Zhang, Y.; Yu, J.; Xu, L. HiFi4G: High-fidelity human performance rendering via compact gaussian splatting. arXiv preprint arXiv:2312.03461, 2023.
Lei, J.; Wang, Y.; Pavlakos, G.; Liu, L.; Daniilidis, K. GART: Gaussian articulated template models. arXiv preprint arXiv:2311.16099, 2023.
Li, Z.; Zheng, Z.; Wang, L.; Liu, Y. Animatable Gaussians: Learning pose-dependent Gaussian maps for high-fidelity human avatar modeling. arXiv preprint arXiv:2311.16099, 2023.
Abdal, R.; Yifan, W.; Shi, Z.; Xu, Y.; Po, R.; Kuang, Z.; Chen, Q.; Yeung, D. Y.; Wetzstein, G. Gaussian shell maps for efficient 3D human generation. arXiv preprint arXiv:2311.17857, 2023.
Pang, H.; Zhu, H.; Kortylewski, A.; Theobalt, C.; Habermann, M. ASH: Animatable Gaussian splats for efficient and photoreal human rendering. arXiv preprint arXiv:2312.05941, 2023.
Qian, Z.; Wang, S.; Mihajlovic, M.; Geiger, A.; Tang, S. 3DGSAvatar: Animatable avatars via deformable 3D Gaussian splatting. arXiv preprint arXiv:2312.09228, 2023.
Li, M.; Yao, S.; Xie, Z.; Chen, K. GaussianBody: Clothed human reconstruction via 3D Gaussian splatting. arXiv preprint arXiv:2401.09720, 2024.
Hu, S.; Liu, Z. GauHuman: Articulated Gaussian splatting from monocular human videos. arXiv preprint arXiv:2312.02973, 2023.
Hu, L.; Zhang, H.; Zhang, Y.; Zhou, B.; Liu, B.; Zhang, S.; Nie, L. GaussianAvatar: Towards realistic human avatar modeling from a single video via animatable 3D gaussians. arXiv preprint arXiv:2312.02134, 2023.
Li, M.; Tao, J.; Yang, Z.; Yang, Y. Human101: Training 100+FPS human Gaussians in 100s from 1 view. arXiv preprint arXiv:2312.15258, 2023.
Shao, Z.; Wang, Z.; Li, Z.; Wang, D.; Lin, X.; Zhang, Y.; Fan, M.; Wang, Z. SplattingAvatar: Realistic realtime human avatars with mesh-embedded Gaussian splatting. arXiv preprint arXiv:2403.05087, 2024.
Wen, J.; Zhao, X.; Ren, Z.; Schwing, A. G.; Wang, S. GoMAvatar: Efficient animatable human modeling from monocular video using Gaussians-on-mesh. arXiv preprint arXiv:2404.07991, 2024.
Liu, X.; Wu, C.; Liu, J.; Liu, X.; Zhao, C.; Feng, H.; Ding, E.; Wang, J. GVA: Reconstructing vivid 3D Gaussian avatars from monocular videos. arXiv preprint arXiv:2404.07991, 2024.
Svitov, D.; Morerio, P.; Agapito, L.; Bue, A. D. HAHA: Highly articulated Gaussian human avatars with textured mesh prior. arXiv preprint arXiv:2404.01053, 2024.
Chen, Y.; Wang, L.; Li, Q.; Xiao, H.; Zhang, S.; Yao, H.; Liu, Y. MonoGussianAvatar: Monocular Gaussian point-based head avatar. arXiv preprint arXiv:2404.01053, 2024.
Zhao, Z.; Bao, Z.; Li, Q.; Qiu, G.; Liu, K. PSAvatar: A point-based morphable shape model for real-time head avatar animation with 3D Gaussian splatting. arXiv preprint arXiv:2401.12900, 2024.
Li, T.; Bolkart, T.; Black, M. J.; Li, H.; Romero, J. Learning a model of facial shape and expression from 4D scans. ACM Transactions on Graphics Vol. 36, No. 6, Article No. 194, 2017.
Wang, J.; Xie, J. C.; Li, X.; Xu, F.; Pun, C. M.; Gao, H. GaussianHead: High-fidelity head avatars with learnable Gaussian derivation. arXiv preprint arXiv:2312.01632, 2023.
Qian, S.; Kirschstein, T.; Schoneveld, L.; Davoli, D.; Giebenhain, S.; Nießner, M. GaussianAvatars: Photorealistic head avatars with rigged 3D Gaussians. arXiv preprint arXiv:2312.02069, 2023.
Rivero, A.; Athar, S.; Shu, Z.; Samaras, D. Rig3DGS: Creating controllable portraits from casual monocular videos. arXiv preprint arXiv:2402.03723, 2024.
Dhamo, H.; Nie, Y.; Moreau, A.; Song, J.; Shaw, R.; Zhou, Y.; Pérez-Pellitero, E. HeadGaS: Real-time animatable head avatars via 3D Gaussian splatting. arXiv preprint arXiv:2312.02902, 2023.
Blanz, V.; Vetter, T. A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, 187–194, 2023.
Xiang, J.; Gao, X.; Guo, Y.; Zhang, J. FlashAvatar: High-fidelity digital avatar rendering at 300FPS. arXiv preprint arXiv:2312.02214, 2023.
Xu, Y.; Chen, B.; Li, Z.; Zhang, H.; Wang, L.; Zheng, Z.; Liu, Y. Gaussian head avatar: Ultra high-fidelity head avatar via dynamic Gaussians. arXiv preprint arXiv:2312.03029, 2023.
Luo, J.; Liu, J.; Davis, J. SplatFace: Gaussian splat face reconstruction leveraging an optimizable surface. arXiv preprint arXiv:2403.18784, 2024.
Xiao, Y.; Wang, X.; Li, J.; Cai, H.; Fan, Y.; Xue, N.; Yang, M.; Shen, Y.; Gao, S. Bridging 3D Gaussian and mesh for freeview video rendering. arXiv preprint arXiv:2403.11453, 2024.
Zhou, Z.; Ma, F.; Fan, H.; Yang, Y. HeadStudio: Text to animatable head avatars with 3D Gaussian splatting. arXiv preprint arXiv:2402.06149, 2024.
Stanishevskii, G.; Steczkiewicz, J.; Szczepanik, T.; Tadeja, S.; Tabor, J.; Spurek, P. ImplicitDeepfake: Plausible face-swapping through implicit deepfake generation using NeRF and Gaussian splatting. arXiv preprint arXiv:2402.06390, 2024.
Saito, S.; Schwartz, G.; Simon, T.; Li, J.; Nam, G. Relightable Gaussian codec avatars. arXiv preprint arXiv:2312.03704, 2023.
Jiang, Z.; Rahmani, H.; Black, S.; Williams, B. M. 3D points splatting for real-time dynamic hand reconstruction. arXiv preprint arXiv:2312.13770, 2023.
Pokhariya, C.; Shah, I. N.; Xing, A.; Li, Z.; Chen, K.; Sharma, A.; Sridhar, S. MANUS: Markerless grasp capture using articulated 3D Gaussians. arXiv preprint arXiv:2312.02137, 2023.
Luo, H.; Ouyang, M.; Zhao, Z.; Jiang, S.; Zhang, L.; Zhang, Q.; Yang, W.; Xu, L.; Yu, J. GaussianHair: Hair modeling and rendering with lightaware Gaussians. arXiv preprint arXiv:2402.10483, 2024.
Marschner, S.; Jensen, H.; Cammarano, M.; Worley, S.; Hanrahan, P. Light scattering from human hair fibers. ACM Transactions on Graphics Vol. 22, No. 3, 780–791, 2003.
Lin, C. H.; Gao, J.; Tang, L.; Takikawa, T.; Zeng, X.; Huang, X.; Kreis, K.; Fidler, S.; Liu, M. Y.; Lin, T. Y. Magic3D: High-resolution text-to-3D content creation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 300–309, 2023.
Chen, Z.; Wang, F.; Liu, H. Text-to-3D using Gaussian splatting. arXiv preprint arXiv:2309.16585, 2023.
Nichol, A.; Jun, H.; Dhariwal, P.; Mishkin, P.; Chen, M. Point-E: A system for generating 3D point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022.
Yi, T.; Fang, J.; Wang, J.; Wu, G.; Xie, L.; Zhang, X.; Liu, W.; Tian, Q.; Wang, X. GaussianDreamer: Fast generation from text to 3D Gaussians by bridging 2D and 3D diffusion models. arXiv preprint arXiv:2310.08529, 2023.
Jun, H.; Nichol, A. Shap-E: Generating conditional 3D implicit functions. arXiv preprint arXiv:2305.02463, 2023.
Shi, Y.; Wang, P.; Ye, J.; Long, M.; Li, K.; Yang, X. MVDream: Multi-view diffusion for 3D generation. arXiv preprint arXiv:2308.16512, 2023.
Wang, P.; Shi, Y. ImageDream: Image-prompt multiview diffusion for 3D generation. arXiv preprint arXiv:2312.02201, 2023.
Yu, Y.; Zhu, S.; Qin, H.; Li, H. BoostDream: Efficient refining for high-quality text-to-3D generation from multi-view diffusion. arXiv preprint arXiv:2401.16764, 2024.
Shen, T.; Gao, J.; Yin, K.; Liu, M. Y.; Fidler, S. Deep marching tetrahedra: A hybrid representation for high-resolution 3D shape synthesis. arXiv preprint arXiv:2111.04276, 2021.
Liang, Y.; Yang, X.; Lin, J.; Li, H.; Xu, X.; Chen, Y. LucidDreamer: Towards high-fidelity text-to-3D generation via interval score matching. arXiv preprint arXiv:2311.11284, 2023.
Li, X.; Wang, H.; Tseng, K. K. GaussianDiffusion: 3D Gaussian splatting for denoising diffusion probabilistic models with structured noise. arXiv preprint arXiv:2311.11221, 2023.
Yang, X.; Chen, Y.; Chen, C.; Zhang, C.; Xu, Y.; Yang, X.; Liu, F.; Lin, G. Learn to optimize denoising scores for 3D generation: A unified and improved diffusion prior on NeRF and 3D Gaussian splatting. arXiv preprint arXiv:2312.04820, 2023.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.
Wang, Z.; Lu, C.; Wang, Y.; Bao, F.; Li, C.; Su, H.; Zhu, J. ProlificDreamer: High-fidelity and diverse text-to-3D generation with variational score distillation. arXiv preprint arXiv:2305.16213, 2023.
Yu, X.; Guo, Y. C.; Li, Y.; Liang, D.; Zhang, S. H.; Qi, X. Text-to-3D with classifier score distillation. arXiv preprint arXiv:2310.19415, 2023.
Zhang, B.; Cheng, Y.; Yang, J.; Wang, C.; Zhao, F.; Tang, Y.; Chen, D.; Guo, B. Gaussian-Cube: Structuring Gaussian splatting using optimal transport for 3D generative modeling. arXiv preprint arXiv:2403.19655, 2024.
He, X.; Chen, J.; Peng, S.; Huang, D.; Li, Y.; Huang, X.; Yuan, C.; Ouyang, W.; He, T. GVGEN: Text-to-3D generation with volumetric representation. arXiv preprint arXiv:2403.12957, 2024.
Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M. J. SMPL: A skinned multi-person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, Volume 2. ACM, 851–866, 2023.
Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8110–8119, 2020.
Yuan, Y.; Li, X.; Huang, Y.; De Mello, S; Nagano, K.; Kautz, J.; Iqbal, U. GAvatar: Animatable 3D Gaussian avatars with implicit mesh learning. arXiv preprint arXiv:2312.11461, 2023.
Lombardi, S.; Simon, T.; Schwartz, G.; Zollhoefer, M.; Sheikh, Y.; Saragih, J. Mixture of volumetric primitives for efficient neural rendering. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 59, 2021.
Pavlakos, G.; Choutas, V.; Ghorbani, N.; Bolkart, T.; Osman, A. A.; Tzionas, D.; Black, M. J. Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10975–10985, 2019.
Liu, X.; Zhan, X.; Tang, J.; Shan, Y.; Zeng, G.; Lin, D.; Liu, X.; Liu, Z. HumanGaussian: Text-driven 3D human generation with gaussian splatting. arXiv preprint arXiv:2311.17061, 2023.
Vilesov, A.; Chari, P.; Kadambi, A. CG3D: Compositional generation for text-to-3D via Gaussian splatting. arXiv preprint arXiv:2311.17907, 2023.
Chung, J.; Lee, S.; Nam, H.; Lee, J.; Lee, K. M. LucidDreamer: Domain-free generation of 3D Gaussian splatting scenes. arXiv preprint arXiv: 2311.13384, 2023.
Ouyang, H.; Heal, K.; Lombardi, S.; Sun, T. Text2Immersion: Generative immersive scene with 3D Gaussians. arXiv preprint arXiv:2312.09242, 2023.
Zhou, X.; Ran, X.; Xiong, Y.; He, J.; Lin, Z.; Wang, Y.; Sun, D.; Yang, M. H. GALA3D: Towards text-to-3D complex scene generation via layout-guided generative Gaussian splatting. arXiv preprint arXiv:2402.07207, 2023.
Li, H.; Shi, H.; Zhang, W.; Wu, W.; Liao, Y.; Wang, L.; Lee, L.; Zhou, P. DreamScene: 3D Gaussian-based text-to-3D scene generation via formation pattern sampling. arXiv preprint arXiv:2404.03575, 2024.
Shriram, J.; Trevithick, A.; Liu, L.; Ramamoorthi, R. Realm-dreamer: Text-driven 3D scene generation with inpainting and depth diffusion. arXiv preprint arXiv:2404.07199, 2024.
Zhou, S.; Fan, Z.; Xu, D.; Chang, H.; Chari, P.; Bharadwaj, T.; You, S.; Wang, Z.; Kadambi, A. DreamScene360: Unconstrained textto-3D scene generation with panoramic Gaussian splatting. arXiv preprint arXiv:2404.06903, 2024.
Liu, R.; Wu, R.; Van Hoorick, B.; Tokmakov, P.; Zakharov, S.; Vondrick, C. Zero-1-to-3: Zero-shot one image to 3D object. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 9264–9275, 2023.
Zhang, J.; Tang, Z.; Pang, Y.; Cheng, X.; Jin, P.; Wei, Y.; Ning, M.; Yuan, L. Repaint123: Fast and high-quality one image to 3D generation with progressive controllable 2D repainting. arXiv preprint arXiv:2312.13271, 2023.
Cao, M.; Wang, X.; Qi, Z.; Shan, Y.; Qie, X.; Zheng, Y. MasaCtrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. arXiv preprint arXiv:2304.08465, 2023.
Deitke, M.; Schwenk, D.; Salvador, J.; Weihs, L.; Michel, O.; VanderBilt, E.; Schmidt, L.; Ehsanit, K.; Kembhavi, A.; Farhadi, A. Objaverse: A universe of annotated 3D objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13142–13153, 2023.
Deitke, M.; Liu, R.; Wallingford, M.; Ngo, H.; Michel, O.; Kusupati, A.; Fan, A.; Laforte, C.; Voleti, V.; Gadre, S. Y.; et al. Objaverse-XL: A universe of 10M+ 3D objects. arXiv preprint arXiv:2307.05663, 2023.
Tang, J.; Chen, Z.; Chen, X.; Wang, T.; Zeng, G.; Liu, Z. LGM: Large multi-view Gaussian model for high-resolution 3D content creation. arXiv preprint arXiv:2402.05054, 2024.
Xu, D.; Yuan, Y.; Mardani, M.; Liu, S.; Song, J.; Wang, Z.; Vahdat, A. AGG: Amortized generative 3D Gaussians for single image to 3D. arXiv preprint arXiv:2401.04099, 2024.
Jiang, L.; Wang, L. BrightDreamer: Generic 3D Gaussian generative framework for fast text-to-3D synthesis. arXiv preprint arXiv:2403.11273, 2024.
Xu, Y.; Shi, Z.; Yifan, W.; Chen, H.; Yang, C.; Peng, S.; Shen, Y.; Wetzstein, G. GRM: Large Gaussian reconstruction model for efficient 3D reconstruction and generation. arXiv preprint arXiv:2403.14621, 2024.
Melas-Kyriazi, L.; Laina, I.; Rupprecht, C.; Neverova, N.; Vedaldi, A.; Gafni, O.; Kokkinos, F. IM-3D: Iterative multiview diffusion and reconstruction for high-quality 3D generation. arXiv preprint arXiv:2402.08682, 2024.
Dai, X.; Hou, J.; Ma, C. Y.; Tsai, S.; Wang, J.; Wang, R.; Zhang, P.; Vandenhende, S.; Wang, X.; Dubey, A.; et al. Emu: Enhancing image generation models using photogenic needles in a haystack. arXiv preprint arXiv:2309.15807, 2023.
Shen, Q.; Yi, X.; Wu, Z.; Zhou, P.; Zhang, H.; Yan, S.; Wang, X. Gamba: Marry Gaussian splatting with Mamba for single view 3D reconstruction. arXiv preprint arXiv:2403.18795, 2024.
Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023.
Li, Z.; Chen, Y.; Zhao, L.; Liu, P. Controllable text-to-3D generation via surface-aligned Gaussian splatting. arXiv preprint arXiv:2403.09981, 2024.
Di, D.; Yang, J.; Luo, C.; Xue, Z.; Chen, W.; Yang, X.; Gao, Y. Hyper-3DG: Text-to-3D Gaussian generation via hypergraph. arXiv preprint arXiv:2403.09236, 2024.
Lin, Y.; Clark, R.; Torr, P. DreamPolisher: Towards high-quality text-to-3D generation via geometric diffusion. arXiv preprint arXiv:2403.17237, 2024.
Feng, Q.; Xing, Z.; Wu, Z.; Jiang, Y. G. FDGaussian: Fast Gaussian splatting from single image via geometric-aware diffusion model. arXiv preprint arXiv:2403.10242, 2024.
Ling, H.; Kim, S. W.; Torralba, A.; Fidler, S.; Kreis, K. Align your Gaussians: Text-to-4D with dynamic 3D Gaussians and composed diffusion models. arXiv preprint arXiv:2312.10242, 2023.
Blattmann, A.; Rombach, R.; Ling, H.; Dockhorn, T.; Kim, S. W.; Fidler, S.; Kreis, K. Align your latents: High-resolution video synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 22563–22575, 2023.
Yin, Y.; Xu, D.; Wang, Z.; Zhao, Y.; Wei, Y. 4DGen: Grounded 4D content generation with spatial-temporal consistency. arXiv preprint arXiv: 2312.17225, 2023.
Pan, Z.; Yang, Z.; Zhu, X.; Zhang, L. Fast dynamic 3D object generation from a single-view video. arXiv preprint arXiv:2401.08742, 2024.
Liu, Y.; Lin, C.; Zeng, Z.; Long, X.; Liu, L.; Komura, T.; Wang, W. SyncDreamer: Generating multiview-consistent images from a single-view image. arXiv preprint arXiv:2309.03453, 2023.
Wu, Z.; Yu, C.; Jiang, Y.; Cao, C.; Wang, F.; Bai, X. SC4D: Sparse-controlled video-to-4D generation and motion transfer. arXiv preprint arXiv:2404.03736, 2024.
Zeng, Y.; Jiang, Y.; Zhu, S.; Lu, Y.; Lin, Y.; Zhu, H.; Hu, W.; Cao, X.; Yao, Y. STAG4D: Spatial-temporal anchored generative 4D Gaussians. arXiv preprint arXiv:2403.14939, 2024.
Xu, D.; Liang, H.; Bhatt, N. P.; Hu, H.; Liang, H.; Plataniotis, K. N.; Wang, Z. Comp4D: LLM-guided compositional 4D scene generation. arXiv preprint arXiv:2312.13763, 2023.
Gao, L.; Wu, T.; Yuan, Y. J.; Lin, M. X.; Lai, Y. K.; Zhang, H. TM-NET: Deep generative networks for textured meshes. arXiv preprint arXiv:2010.06217, 2020.
Gao, L.; Yang, J.; Wu, T.; Yuan, Y.; Fu, H.; Lai, Y.; Zhang, H. SDM-NET: Deep generative network for structured deformable mesh. ACM Transactions on Graphics Vol. 38, No. 6, Article No. 243, 2019.
Nash, C.; Ganin, Y.; Ali Eslami, S. M.; Battaglia, P. W. PolyGen: An autoregressive generative model of 3D meshes. arXiv preprint arXiv:2002.10880, 2020.
Siddiqui, Y.; Alliegro, A.; Artemov, A.; Tommasi, T.; Sirigatti, D.; Rosov, V.; Dai, A.; Nießner M. MeshGPT: Generating triangle meshes with decoder-only transformers. arXiv preprint arXiv:2311.15475, 2023.
Ye, C.; Nie, Y.; Chang, J.; Chen, Y.; Zhi, Y.; Han, X. GauStudio: A modular framework for 3D Gaussian splatting and beyond. arXiv preprint arXiv:2403.19632, 2024.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; De-Vito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017.
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. TensorFlow: A system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283, 2016.
Hu, S. M.; Liang, D.; Yang, G. Y.; Yang, G. W.; Zhou, W. Y. Jittor: A novel deep learning framework with meta-operators and unified graph execution. Science China Information Sciences Vol. 63, No. 12, Article No. 222103, 2020.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (62322210), Beijing Municipal Natural Science Foundation for Distinguished Young Scholars (JQ21013), Beijing Municipal Science and Technology Commission (Z231100005923031), and 2023 Tencent AI Lab Rhino-Bird Focused Research Program. We would like to thank Jia-Mu Sun and Shu-Yu Chen for their suggestions concerning the timeline figure.
Author information
Authors and Affiliations
Contributions
Tong Wu conducted an extensive literature review and drafted the manuscript. Yu-Jie Yuan, Ling-Xiao Zhang, and Jie Yang provided critical insights, analysis of the existing research, and part of the manuscript writing. Yan-Pei Cao, Ling-Qi Yan, and Lin Gao conceived the idea and scope of the survey and improved the writing. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Tong Wu received his bachelor degree in computer science from Huazhong University of Science and Technology in 2019. He is currently a Ph.D. candidate in the Institute of Computing Technology, Chinese Academy of Sciences. His research interests include computer graphics and computer vision.
Yu-Jie Yuan received his bachelor degree in mathematics from Xi’an Jiaotong University in 2018. He is currently a Ph.D. candidate in the Institute of Computing Technology, Chinese Academy of Sciences. His research interests include computer graphics and neural rendering.
Ling-Xiao Zhang received his master of engineering degree in computer technology from the Chinese Academy of Sciences in 2020. He is currently an engineer at the Institute of Computing Technology, Chinese Academy of Sciences. His research interests include computer graphics and geometric processing.
Jie Yang received his bachelor degree in mathematics from Sichuan University and his Ph.D. degree in computer science from the Institute of Computing Technology, Chinese Academy of Sciences, where he is currently an assistant professor. His research interests include computer graphics and geometric processing.
Yan-Pei Cao received his bachelor and Ph.D. degrees in computer science from Tsinghua University in 2013 and 2018, respectively. He is currently the head of research and founding team at VAST. His research interests include computer graphics and 3D computer vision.
Ling-Qi Yan is an assistant professor of computer science at UC Santa Barbara, co-director of the MIRAGE Lab, and affiliated faculty in the Four Eyes Lab. Before joining UCSB, he received his Ph.D. degree from the Department of Electrical Engineering and Computer Sciences at UC Berkeley.
Lin Gao received his bachelor degree in mathematics from Sichuan University and his Ph.D. degree in computer science from Tsinghua University. He is currently a professor in the Institute of Computing Technology, Chinese Academy of Sciences. He has been awarded a Newton Advanced Fellowship from the Royal Society and an Asia Graphics Association young researcher award. His research interests include computer graphics and geometric processing.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript, please go to https://www.editorialmanager.com/cvmj.
About this article
Cite this article
Wu, T., Yuan, YJ., Zhang, LX. et al. Recent advances in 3D Gaussian splatting. Comp. Visual Media 10, 613–642 (2024). https://doi.org/10.1007/s41095-024-0436-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41095-024-0436-y