[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200704.html
   My bibliography  Save this paper

Convergence rates of general regularization methods for statistical inverse problems and applications

Author

Listed:
  • Bissantz, Nicolai
  • Hohage, T.
  • Munk, Axel
  • Ruymgaart, F.
Abstract
During the past the convergence analysis for linear statistical inverse problems has mainly focused on spectral cut-off and Tikhonov type estimators. Spectral cut-off estimators achieve minimax rates for a broad range of smoothness classes and operators, but their practical usefulness is limited by the fact that they require a complete spectral decomposition of the operator. Tikhonov estimators are simpler to compute, but still involve the inversion of an operator and achieve minimax rates only in restricted smoothness classes. In this paper we introduce a unifying technique to study the mean square error of a large class of regularization methods (spectral methods) including the aforementioned estimators as well as many iterative methods, such as í-methods and the Landweber iteration. The latter estimators converge at the same rate as spectral cut-off, but only require matrixvector products. Our results are applied to various problems, in particular we obtain precise convergence rates for satellite gradiometry, L2-boosting, and errors in variable problems.

Suggested Citation

  • Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200704
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/24990/1/534717500.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Healy, Dennis M. & Hendriks, Harrie & Kim, Peter T., 1998. "Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 1-22, October.
    2. Kim, Peter T. & Koo, Ja-Yong, 2002. "Optimal Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 21-42, January.
    3. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    4. Axel Munk, 2002. "Testing the Goodness of Fit of Parametric Regression Models with Random Toeplitz Forms," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 501-533, September.
    5. Iain M. Johnstone & Gérard Kerkyacharian & Dominique Picard & Marc Raimondo, 2004. "Wavelet deconvolution in a periodic setting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 547-573, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bissantz, Nicolai & Holzmann, Hajo & Proksch, Katharina, 2014. "Confidence regions for images observed under the Radon transform," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 86-107.
    2. Christian Wagner & Ulrich Stadtmüller, 2008. "Asymptotics for TAYLEX and SIMEX estimators in deconvolution of densities," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(6), pages 507-522.
    3. Jan Johannes & Anna Simoni & Rudolf Schenk, 2020. "Adaptive Bayesian Estimation in Indirect Gaussian Sequence Space Models," Annals of Economics and Statistics, GENES, issue 137, pages 83-116.
    4. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1265-1305, December.
    5. Nicolai Bissantz & Hajo Holzmann, 2013. "Asymptotics for spectral regularization estimators in statistical inverse problems," Computational Statistics, Springer, vol. 28(2), pages 435-453, April.
    6. Andrews, Donald W.K., 2017. "Examples of L2-complete and boundedly-complete distributions," Journal of Econometrics, Elsevier, vol. 199(2), pages 213-220.
    7. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    8. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    9. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    10. Bissantz, Nicolai & Birke, Melanie, 2009. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2364-2375, November.
    11. Marteau Clement & Loubes Jean-Michel, 2012. "Adaptive estimation for an inverse regression model with unknown operator," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 215-242, August.
    12. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2011. "Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator," Econometric Theory, Cambridge University Press, vol. 27(3), pages 522-545, June.
    13. Bissantz, Nicolai & Birke, Melanie, 2008. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Technical Reports 2008,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Clément Marteau, 2010. "The Stein hull," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(6), pages 685-702.
    15. Raymond Carroll & Xiaohong Chen & Yingyao Hu, 2010. "Identification and estimation of nonlinear models using two samples with nonclassical measurement errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 379-399.
    16. Matthew Thorpe & Adam M. Johansen, 2018. "Pointwise convergence in probability of general smoothing splines," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 717-744, August.
    17. Birke, Melanie & Bissantz, Nicolai & Holzmann, Hajo, 2008. "Confidence bands for inverse regression models with application to gel electrophoresis," Technical Reports 2008,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    18. Chen, Xiaohong & Pouzo, Demian, 2008. "Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments," Working Papers 47, Yale University, Department of Economics.
    19. Colin Griesbach & Andreas Mayr & Elisabeth Bergherr, 2023. "Variable Selection and Allocation in Joint Models via Gradient Boosting Techniques," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    20. Dahmani, Abdelnasser & Ait Saidi, Ahmed & Bouhmila, Fatah & Aissani, Mouloud, 2009. "Consistency of the Tikhonov's regularization in an ill-posed problem with random data," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 722-727, March.
    21. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.
    22. Hotz, Thomas & Marnitz, Philipp & Stichtenoth, Rahel & Davies, Laurie & Kabluchko, Zakhar & Munk, Axel, 2012. "Locally adaptive image denoising by a statistical multiresolution criterion," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 543-558.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Kim, Peter T. & Koo, Ja-Yong & Park, Heon Jin, 2004. "Sharp minimaxity and spherical deconvolution for super-smooth error distributions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 384-392, August.
    3. Vareschi, T., 2014. "Application of second generation wavelets to blind spherical deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 398-417.
    4. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.
    5. Koo, Ja-Yong & Kim, Peter T., 2008. "Sharp adaptation for spherical inverse problems with applications to medical imaging," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 165-190, February.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Hendriks, Harrie, 2003. "Application of fast spherical Fourier transform to density estimation," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 209-221, February.
    8. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    9. Jammalamadaka, S. Rao & Terdik, György H., 2019. "Harmonic analysis and distribution-free inference for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 436-451.
    10. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    11. Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Goldenshluger, Alexander, 2002. "Density Deconvolution in the Circular Structural Model," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 360-375, May.
    13. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    14. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    15. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    16. Hofner, Benjamin & Mayr, Andreas & Schmid, Matthias, 2016. "gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i01).
    17. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    18. Pham Ngoc, Thanh Mai & Rivoirard, Vincent, 2013. "The dictionary approach for spherical deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 138-156.
    19. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
    20. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.