[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/wat/wpaper/0904.html
   My bibliography  Save this paper

The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey

Author

Listed:
  • Dinghai Xu

    (Department of Economics, University of Waterloo)

Abstract
This paper provides a selected review of the recent developments and applications of mixtures of normal (MN) distribution models in empirical finance. Once attractive property of the MN model is that it is flexible enough to accommodate various shapes of continuous distributions, and able to capture leptokurtic, skewed and multimodal characteristics of financial time series data. In addition, the MN-based analysis fits well with the related regime-switching literature. The survey is conducted under two broad themes: (1) minimum-distance estimation methods, and (2) financial modeling and its applications.

Suggested Citation

  • Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
  • Handle: RePEc:wat:wpaper:0904
    as

    Download full text from publisher

    File URL: http://economics.uwaterloo.ca/documents/mn-review-paper-CES.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    2. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    3. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    4. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    5. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    8. Dinghai Xu & John Knight & Tony S. Wirjanto, 2011. "Asymmetric Stochastic Conditional Duration Model--A Mixture-of-Normal Approach," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 469-488, Summer.
    9. Knight, John L. & Yu, Jun, 2002. "Empirical Characteristic Function In Time Series Estimation," Econometric Theory, Cambridge University Press, vol. 18(3), pages 691-721, June.
    10. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    11. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
    12. Bauwens, L. & Bos, C.S. & van Dijk, H.K., 1999. "Adaptive Polar Sampling with an Application to a Bayes Measure of Value-at-Risk," Econometric Institute Research Papers TI 99-082/4, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
    14. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    15. Schmidt, Peter, 1982. "An Improved Version of the Quandt-Ramsey MGE Estimator for Mixtures of Normal Distributions and Switching Regressions," Econometrica, Econometric Society, vol. 50(2), pages 501-516, March.
    16. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    17. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    18. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    19. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    20. Ronald J. Mahieu & Peter C. Schotman, 1998. "An empirical application of stochastic volatility models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 333-360.
    21. Kien Tran, 1998. "Estimating mixtures of normal distributions via empirical characteristic function," Econometric Reviews, Taylor & Francis Journals, vol. 17(2), pages 167-183.
    22. John Knight & Cathy Q. Ning, 2008. "Estimation of the stochastic conditional duration model via alternative methods," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 593-616, November.
    23. Lee, Lung-Fei & Trost, Robert P., 1978. "Estimation of some limited dependent variable models with application to housing demand," Journal of Econometrics, Elsevier, vol. 8(3), pages 357-382, December.
    24. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
    25. Subu Venkataraman, 1997. "Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 21(Mar), pages 2-13.
    26. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    27. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    28. Lee, Lung-Fei, 1978. "Unionism and Wage Rates: A Simultaneous Equations Model with Qualitative and Limited Dependent Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 415-433, June.
    29. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    30. Damiano Brigo & Fabio Mercurio & Giulio Sartorelli, 2003. "Alternative asset-price dynamics and volatility smile," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 173-183.
    31. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    32. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    33. Jiang, George J & Knight, John L, 2002. "Estimation of Continuous-Time Processes via the Empirical Characteristic Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 198-212, April.
    34. Jun Yu, 2004. "Empirical Characteristic Function Estimation and Its Applications," Econometric Reviews, Taylor & Francis Journals, vol. 23(2), pages 93-123.
    35. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    36. Heckman, James J, 1974. "Life Cycle Consumption and Labor Supply: An Explanation of the Relationship Between Income and Consumption Over the Life Cycle," American Economic Review, American Economic Association, vol. 64(1), pages 188-194, March.
    37. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    38. Fair, Ray C & Jaffee, Dwight M, 1972. "Methods of Estimation for Markets in Disequilibrium," Econometrica, Econometric Society, vol. 40(3), pages 497-514, May.
    39. Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
    40. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Lu & Shao Yi, 2022. "Reducing Overestimating and Underestimating Volatility via the Augmented Blending-ARCH Model," Applied Economics and Finance, Redfame publishing, vol. 9(2), pages 48-59, May.
    2. Jun Lu & Shao Yi, 2022. "Reducing overestimating and underestimating volatility via the augmented blending-ARCH model," Papers 2203.12456, arXiv.org.
    3. Yu Mei & Zhiping Chen & Jia Liu & Bingbing Ji, 2022. "Multi-stage portfolio selection problem with dynamic stochastic dominance constraints," Journal of Global Optimization, Springer, vol. 83(3), pages 585-613, July.
    4. Jin Wang & Michael R. Taaffe, 2015. "Multivariate Mixtures of Normal Distributions: Properties, Random Vector Generation, Fitting, and as Models of Market Daily Changes," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 193-203, May.
    5. Assoc. Prof. Leon Li, 2022. "The Pricing of Discretionary Accruals Revisited: The Application of Mixtures of Regressions Based on Asymmetric Investor Behavior," International Journal of Economics and Financial Research, Academic Research Publishing Group, vol. 8(3), pages 78-84, 09-2022.
    6. Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    2. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    3. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Dinghai Xu & John Knight, 2013. "Stochastic volatility model under a discrete mixture-of-normal specification," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(2), pages 216-239, April.
    5. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    7. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    8. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    9. Hodoshima, Jiro & Yamawake, Toshiyuki, 2019. "Comparison of utility indifference pricing and mean-variance approach under a normal mixture distribution with time-varying volatility," Finance Research Letters, Elsevier, vol. 28(C), pages 74-81.
    10. repec:bgu:wpaper:0603 is not listed on IDEAS
    11. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    12. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    13. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    14. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    15. Minheng Xiao, 2022. "Data-Driven Risk Measurement by SV-GARCH-EVT Model," Papers 2201.09434, arXiv.org, revised Dec 2024.
    16. Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2013. "Bayesian Inference of Asymmetric Stochastic Conditional Duration Models," Working Paper series 28_13, Rimini Centre for Economic Analysis.
    17. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    18. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    19. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    20. PREMINGER, Arie & HAFNER, Christian, 2006. "Deciding between GARCH and stochastic volatility via strong decision rules," LIDAM Discussion Papers CORE 2006042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    22. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.

    More about this item

    Keywords

    Mixtures of Normal; Maximum Likelihood; Moment Generating Function; Characteristic Function; Switching Regression Model; (G) ARCH Model; Stochastic Volatility Model; Autoregressive Conditional Duration Model; Stochastic Duration Model; Value at Risk.;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wat:wpaper:0904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sherri Anne Arsenault (email available below). General contact details of provider: https://edirc.repec.org/data/dewatca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.