[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201869.html
   My bibliography  Save this paper

Long-Memory Modeling and Forecasting: Evidence from the U.S. Historical Series of Inflation

Author

Listed:
  • Heni Boubaker

    (International University of Rabat, BEAR LAB, Technopolis Rabat-Shore Rocade-Sale, Morocco)

  • Giorgio Canarella

    (University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, USA)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, South Africa)

  • Stephen M. Miller

    (University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, USA)

Abstract
We report the results of applying semi-parametric long-memory estimators to the historical monthly series of U.S. inflation, and analyze their empirical forecasting performance over 1, 6, 12, and 24 months using in-sample and out-of-sample procedures. For comparison purposes, we also apply two parametric estimators, the naive AR(1) and the ARFIMA(1, d, 1) models. We evaluate the forecasting accuracy of the competing methods using the mean square error (MSE) and mean absolute error (MAE) criteria. We evaluate the statistical significance of forecasting accuracy of competing forecasts using the Diebold-Mariano (1995) test. Overall, our results preforms slightly better than the Lahiani and Scaillet (2009) threshold estimator based on the MSE and MAE criteria. This improvement in performance does not prove significant enough to cause a rejection of the null hypothesis of equality of predictive accuracy. The Boubaker (2017) estimator, on the other hand, significantly outperforms the time-invariant estimators over longer horizons. Over shorter horizons, however, the Boubaker (2017) estimator does not exhibit a significantly better predictive performance than the time-invariant long-memory estimators with the exception of the naive AR(1) model.

Suggested Citation

  • Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2018. "Long-Memory Modeling and Forecasting: Evidence from the U.S. Historical Series of Inflation," Working Papers 201869, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201869
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002. "Inflation, forecast intervals and long memory regression models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
    2. Ca’ Zorzi, Michele & Kolasa, Marcin & Rubaszek, Michał, 2017. "Exchange rate forecasting with DSGE models," Journal of International Economics, Elsevier, vol. 107(C), pages 127-146.
    3. Jeff Fuhrer & George Moore, 1995. "Inflation Persistence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 127-159.
    4. Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
    5. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    6. Manmohan S. Kumar & Tatsuyoshi Okimoto, 2007. "Dynamics of Persistence in International Inflation Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1457-1479, September.
    7. Giorgio Canarella & Stephen M Miller, 2017. "Inflation Persistence Before and After Inflation Targeting: A Fractional Integration Approach," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 78-103, January.
    8. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
    9. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    10. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    11. Beechey, Meredith & Österholm, Pär, 2009. "Time-varying inflation persistence in the Euro area," Economic Modelling, Elsevier, vol. 26(2), pages 532-535, March.
    12. Heni Boubaker & Anne Peguin-Feissolle, 2013. "Estimating the Long-Memory Parameter in Nonstationary Processes Using Wavelets," Post-Print hal-01498239, HAL.
    13. Jeffrey C. Fuhrer, 1995. "The persistence of inflation and the cost of disinflation," New England Economic Review, Federal Reserve Bank of Boston, issue Jan, pages 3-16.
    14. Heni Boubaker & Anne Péguin-Feissolle, 2013. "Estimating the Long-Memory Parameter in Nonstationary Processes Using Wavelets," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 291-306, October.
    15. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    16. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    17. Mark J. Jensen, 1997. "Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Long Memory Parameter," Econometrics 9710002, University Library of Munich, Germany.
    18. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    19. Fuhrer, Jeffrey C., 2010. "Inflation Persistence," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 9, pages 423-486, Elsevier.
    20. Lee, Jin, 2005. "Estimating memory parameter in the US inflation rate," Economics Letters, Elsevier, vol. 87(2), pages 207-210, May.
    21. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    22. Ramazan Genay & Faruk Seļuk & Brandon Whitcher, 2003. "Systematic risk and timescales," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 108-116.
    23. Georgios P. Kouretas & Mark E. Wohar, 2012. "The dynamics of inflation: a study of a large number of countries," Applied Economics, Taylor & Francis Journals, vol. 44(16), pages 2001-2026, June.
    24. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    25. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    26. Meller, Barbara & Nautz, Dieter, 2012. "Inflation persistence in the Euro area before and after the European Monetary Union," Economic Modelling, Elsevier, vol. 29(4), pages 1170-1176.
    27. Michael D. Bordo & Angela Redish, 2003. "Is Deflation depressing? Evidence from the Classical Gold Standard," NBER Working Papers 9520, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    2. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    3. Giorgio Canarella & Stephen M Miller, 2017. "Inflation Persistence Before and After Inflation Targeting: A Fractional Integration Approach," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 78-103, January.
    4. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
    5. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Targeting: New Evidence from Fractional Integration and Cointegration," Working papers 2016-08, University of Connecticut, Department of Economics.
    6. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
    7. Georgios P. Kouretas & Mark E. Wohar, 2012. "The dynamics of inflation: a study of a large number of countries," Applied Economics, Taylor & Francis Journals, vol. 44(16), pages 2001-2026, June.
    8. Heni Boubaker, 2016. "A Comparative Study of the Performance of Estimating Long-Memory Parameter Using Wavelet-Based Entropies," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 693-731, December.
    9. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2016. "Modeling U.S. Historical Time-Series Prices and Inflation Using Various Linear and Nonlinear Long-Memory Approaches," Working Papers 201683, University of Pretoria, Department of Economics.
    10. Florian Heinen & Philipp Sibbertsen & Robinson Kruse, 2009. "Forecasting long memory time series under a break in persistence," CREATES Research Papers 2009-53, Department of Economics and Business Economics, Aarhus University.
    11. Rinke, Saskia & Busch, Marie & Leschinski, Christian, 2017. "Long Memory, Breaks, and Trends: On the Sources of Persistence in Inflation Rates," Hannover Economic Papers (HEP) dp-584, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    12. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    13. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    14. Mateo Isoardi & Luis A. Gil-Alana, 2019. "Inflation in Argentina: Analysis of Persistence Using Fractional Integration," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(2), pages 204-223, April.
    15. Luis A. Gil-Alana & Andrea Mervar & James E. Payne, 2017. "The stationarity of inflation in Croatia: anti-inflation stabilization program and the change in persistence," Economic Change and Restructuring, Springer, vol. 50(1), pages 45-58, February.
    16. Luis A. Gil-Alana & Yadollah Dadgar & Rouhollah Nazari, 2019. "Iranian inflation: peristence and structural breaks," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 43(2), pages 398-408, April.
    17. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    18. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    19. Heni Boubaker, 2020. "Wavelet Estimation Performance of Fractional Integrated Processes with Heavy-Tails," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 473-498, February.
    20. Granville, Brigitte & Zeng, Ning, 2019. "Time variation in inflation persistence: New evidence from modelling US inflation," Economic Modelling, Elsevier, vol. 81(C), pages 30-39.

    More about this item

    Keywords

    long memory; wavelet analysis; time-varying persistence;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.