[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/49745.html
   My bibliography  Save this paper

Make Almost Stochastic Dominance really Almost

Author

Listed:
  • Guo, Xu
  • Wong, Wing-Keung
  • Zhu, Lixing
Abstract
Leshno and Levy (2002) extend stochastic dominance (SD) theory to almost stochastic dominance (ASD) for {\it most} decision makers. When comparing any two prospects, Guo, et al.\ (2013) find that there will be ASD relationship even there is only very little difference in mean, variance, skewness, or kurtosis. Investors may prefer to conclude ASD only if the dominance is nearly almost. Levy, et al. (2010) have provided two approaches to solve the problem. In this paper, we extend their work by first recommending an existing stochastic dominance test to handle the issue and thereafter developing a new test for the ASD which could detect dominance for any pre-determined small value. We also provide two approaches to obtain the critical values for our proposed test.

Suggested Citation

  • Guo, Xu & Wong, Wing-Keung & Zhu, Lixing, 2013. "Make Almost Stochastic Dominance really Almost," MPRA Paper 49745, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:49745
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/49745/1/MPRA_paper_49745.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y.K. Tse & Xibin Zhang, 2003. "A Monte Carlo Investigation of Some Tests for Stochastic Dominance," Monash Econometrics and Business Statistics Working Papers 7/03, Monash University, Department of Econometrics and Business Statistics.
    2. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    3. Guo, Xu & Zhu, Xuehu & Wong, Wing-Keung & Zhu, Lixing, 2013. "A note on almost stochastic dominance," Economics Letters, Elsevier, vol. 121(2), pages 252-256.
    4. Lean, Hooi Hooi & Smyth, Russell & Wong, Wing-Keung, 2007. "Revisiting calendar anomalies in Asian stock markets using a stochastic dominance approach," Journal of Multinational Financial Management, Elsevier, vol. 17(2), pages 125-141, April.
    5. Zhuo Qiao & Ephraim Clark & Wing-Keung Wong, 2014. "Investors’ preference towards risk: evidence from the Taiwan stock and stock index futures markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 54(1), pages 251-274, March.
    6. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    7. Larry Y. Tzeng & Rachel J. Huang & Pai-Ta Shih, 2013. "Revisiting Almost Second-Degree Stochastic Dominance," Management Science, INFORMS, vol. 59(5), pages 1250-1254, May.
    8. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    9. Chan, Chia-Ying & de Peretti, Christian & Qiao, Zhuo & Wong, Wing-Keung, 2012. "Empirical test of the efficiency of the UK covered warrants market: Stochastic dominance and likelihood ratio test approach," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 162-174.
    10. Levy, Moshe, 2009. "Almost Stochastic Dominance and stocks for the long run," European Journal of Operational Research, Elsevier, vol. 194(1), pages 250-257, April.
    11. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    12. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    13. Zhidong Bai & Hua Li & Huixia Liu & Wing‐Keung Wong, 2011. "Test statistics for prospect and Markowitz stochastic dominances with applications," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 278-303, July.
    14. Dominic Gasbarro & Wing-Keung Wong & J. Kenton Zumwalt, 2007. "Stochastic Dominance Analysis of iShares," The European Journal of Finance, Taylor & Francis Journals, vol. 13(1), pages 89-101.
    15. Fong, Wai Mun & Wong, Wing Keung & Lean, Hooi Hooi, 2005. "International momentum strategies: a stochastic dominance approach," Journal of Financial Markets, Elsevier, vol. 8(1), pages 89-109, February.
    16. Guo, Xu & Wong, Wing-Keung & Zhu, Lixing, 2013. "Almost Stochastic Dominance and Moments," MPRA Paper 49205, University Library of Munich, Germany.
    17. Dominic Gasbarro & Wing-Keung Wong & J. Kenton Zumwalt, 2012. "Stochastic Dominance And Behavior Towards Risk: The Market For Ishares," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-20.
    18. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    19. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    20. Fong, Wai Mun & Lean, Hooi Hooi & Wong, Wing Keung, 2008. "Stochastic dominance and behavior towards risk: The market for Internet stocks," Journal of Economic Behavior & Organization, Elsevier, vol. 68(1), pages 194-208, October.
    21. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim & Wolf, Avner, 2009. "Bonds versus stocks: Investors' age and risk taking," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 817-830, September.
    22. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    23. Moshe Leshno & Haim Levy, 2002. "Preferred by "All" and Preferred by "Most" Decision Makers: Almost Stochastic Dominance," Management Science, INFORMS, vol. 48(8), pages 1074-1085, August.
    24. Dominic Gasbarro & Wing-Keung Wong & J. Kenton Zumwalt, 2007. "Stochastic Dominance Analysis of iShares," The European Journal of Finance, Taylor & Francis Journals, vol. 13(1), pages 89-101.
    25. Haim Levy & Moshe Leshno & Boaz Leibovitch, 2010. "Economically relevant preferences for all observed epsilon," Annals of Operations Research, Springer, vol. 176(1), pages 153-178, April.
    26. Wing-Keung Wong & Chenghu Ma, 2008. "Preferences over location-scale family," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(1), pages 119-146, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    2. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    3. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2016. "Management Science, Economics and Finance: A Connection," Econometric Institute Research Papers EI2016-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," JRFM, MDPI, vol. 11(1), pages 1-29, March.
    6. Lam, Kin & Lean, Hooi Hooi & Wong, Wing-Keung, 2016. "Stochastic Dominance and Investors’ Behavior towards Risk: The Hong Kong Stocks and Futures Markets," MPRA Paper 74386, University Library of Munich, Germany.
    7. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Documentos de Trabajo del ICAE 2018-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    8. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(1), pages 1-29, March.
    9. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, And Big Data: Connections," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 36-94, December.
    10. Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2015. "Stochastic dominance statistics for risk averters and risk seekers: an analysis of stock preferences for USA and China," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 889-900, May.
    11. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    12. Zhihui Lv & Amanda M. Y. Chu & Wing Keung Wong & Thomas C. Chiang, 2021. "The maximum-return-and-minimum-volatility effect: evidence from choosing risky and riskless assets to form a portfolio," Risk Management, Palgrave Macmillan, vol. 23(1), pages 97-122, June.
    13. Hooi Lean & Kok Phoon & Wing-Keung Wong, 2013. "Stochastic dominance analysis of CTA funds," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 155-170, January.
    14. Fathi Abid & Pui Lam Leung & Mourad Mroua & Wing Keung Wong, 2014. "International Diversification Versus Domestic Diversification: Mean-Variance Portfolio Optimization and Stochastic Dominance Approaches," JRFM, MDPI, vol. 7(2), pages 1-22, May.
    15. Qiao, Zhuo & Wong, Wing-Keung & Fung, Joseph K.W., 2013. "Stochastic dominance relationships between stock and stock index futures markets: International evidence," Economic Modelling, Elsevier, vol. 33(C), pages 552-559.
    16. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    17. Ephraim Clark & Zhuo Qiao & Wing-Keung Wong, 2016. "Theories Of Risk: Testing Investor Behavior On The Taiwan Stock And Stock Index Futures Markets," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 907-924, April.
    18. Chan, Chia-Ying & de Peretti, Christian & Qiao, Zhuo & Wong, Wing-Keung, 2012. "Empirical test of the efficiency of the UK covered warrants market: Stochastic dominance and likelihood ratio test approach," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 162-174.
    19. Bai, Zhidong & Phoon, Kok Fai & Wang, Keyan & Wong, Wing-Keung, 2013. "The performance of commodity trading advisors: A mean-variance-ratio test approach," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 188-201.
    20. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.

    More about this item

    Keywords

    stochastic dominance; almost stochastic dominance; risk aversion; stochastic dominance test; almost stochastic dominance test;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:49745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.