[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/664.html
   My bibliography  Save this paper

Cost-effective unilateral climate policy design: Size Matters

Author

Listed:
Abstract
Given the bleak prospects for a global agreement on mitigating climate change, pressure for unilateral abatement is increasing. A major challenge is emissions leakage. Border carbon adjustments and output-based allocation of emissions allowances can increase effectiveness of unilateral action but introduce distortions of their own. We assess antileakage measures as a function of abatement coalition size. We first develop a partial equilibrium analytical framework to see how these instruments affect emissions within and outside the coalition. We then employ a computable general equilibrium model of international trade and energy use to assess the strategies as the coalition grows. We find that full border adjustments rank first in global cost-effectiveness, followed by import tariffs and output-based rebates. The differences across measures and their overall appeal decline as the abatement coalition grows. In terms of cost, the coalition countries prefer border carbon adjustments; countries outside the coalition prefer output-based rebates.

Suggested Citation

  • Christoph Böhringer & Carolyn Fischer & Knut Einar Rosendahl, 2011. "Cost-effective unilateral climate policy design: Size Matters," Discussion Papers 664, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:664
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp664.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Krichene, Noureddine, 2002. "World crude oil and natural gas: a demand and supply model," Energy Economics, Elsevier, vol. 24(6), pages 557-576, November.
    2. Christoph Böhringer & Jared C. Carbone & Thomas F. Rutherford, 2012. "Efficiency and Equity Implications of Alternative Instruments to Reduce Carbon Leakage," Working Papers V-346-12, University of Oldenburg, Department of Economics, revised Jun 2012.
    3. Aaditya Mattoo & Arvind Subramanian & Dominique van der Mensbrugghe & Jianwu He, 2009. "Reconciling Climate Change and Trade Policy," Working Papers 189, Center for Global Development.
    4. Böhringer, Christoph & Carbone, Jared C. & Rutherford, Thomas F., 2012. "Unilateral climate policy design: Efficiency and equity implications of alternative instruments to reduce carbon leakage," Energy Economics, Elsevier, vol. 34(S2), pages 208-217.
    5. Jean-Marc Burniaux & Joaquim Oliveira Martins, 2016. "Carbon Leakages: A General Equilibrium View," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 341-363, Springer.
    6. Christoph Böhringer & Carolyn Fischer & Knut Einar Rosendahl, 2011. "Cost-Effective Climate Policy Design: Size Matters," Working Papers V-339-11, University of Oldenburg, Department of Economics, revised Jul 2011.
    7. Hoel, Michael, 1991. "Global environmental problems: The effects of unilateral actions taken by one country," Journal of Environmental Economics and Management, Elsevier, vol. 20(1), pages 55-70, January.
    8. Jean-Marc Burniaux & Jean Chateau & Romain Duval, 2013. "Is there a case for carbon-based border tax adjustment? An applied general equilibrium analysis," Applied Economics, Taylor & Francis Journals, vol. 45(16), pages 2231-2240, June.
    9. Böhringer, Christoph & Fischer, Carolyn & Rosendahl, Knut Einar, 2014. "Cost-effective unilateral climate policy design: Size matters," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 318-339.
    10. Rob Dellink & Gregory Briner & Christa Clapp, 2011. "The Copenhagen Accord/Cancún Agreements Emission Pledges For 2020: Exploring Economic And Environmental Impacts," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 53-78.
    11. Christoph Böhringer & Thomas F. Rutherford, 2010. "The Costs of Compliance: A CGE Assessment of Canada’s Policy Options under the Kyoto Protocol," The World Economy, Wiley Blackwell, vol. 33(2), pages 177-211, February.
    12. Boehringer Christoph & Fischer Carolyn & Rosendahl Knut Einar, 2010. "The Global Effects of Subglobal Climate Policies," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(2), pages 1-35, December.
    13. Stef Proost & John B. Braden (ed.), 1998. "Climate Change, Transport and Environmental Policy," Books, Edward Elgar Publishing, number 1276.
    14. Böhringer, Christoph & Balistreri, Edward J. & Rutherford, Thomas F., 2012. "The role of border carbon adjustment in unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29)," Energy Economics, Elsevier, vol. 34(S2), pages 97-110.
    15. Böhringer, Christoph & Bye, Brita & Fæhn, Taran & Rosendahl, Knut Einar, 2012. "Alternative designs for tariffs on embodied carbon: A global cost-effectiveness analysis," Energy Economics, Elsevier, vol. 34(S2), pages 143-153.
    16. Felder Stefan & Rutherford Thomas F., 1993. "Unilateral CO2 Reductions and Carbon Leakage: The Consequences of International Trade in Oil and Basic Materials," Journal of Environmental Economics and Management, Elsevier, vol. 25(2), pages 162-176, September.
    17. Dong, Yan & Whalley, John, 2011. "Carbon motivated regional trade arrangements: Analytics and simulations," Economic Modelling, Elsevier, vol. 28(6), pages 2783-2792.
    18. Niven Winchester, 2012. "The Impact of Border Carbon Adjustments Under Alternative Producer Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(2), pages 354-359.
    19. Azusa OKAGAWA & Kanemi BAN, 2008. "Estimation of substitution elasticities for CGE models," Discussion Papers in Economics and Business 08-16, Osaka University, Graduate School of Economics.
    20. Ben Lockwood & John Whalley, 2010. "Carbon‐motivated Border Tax Adjustments: Old Wine in Green Bottles?," The World Economy, Wiley Blackwell, vol. 33(6), pages 810-819, June.
    21. Fischer, Carolyn & Fox, Alan K., 2012. "Comparing policies to combat emissions leakage: Border carbon adjustments versus rebates," Journal of Environmental Economics and Management, Elsevier, vol. 64(2), pages 199-216.
    22. repec:dau:papers:123456789/7970 is not listed on IDEAS
    23. Hoel Michael, 1994. "Efficient Climate Policy in the Presence of Free Riders," Journal of Environmental Economics and Management, Elsevier, vol. 27(3), pages 259-274, November.
    24. Fischer, Carolyn & Fox, Alan K., 2009. "Comparing Policies to Combat Emissions Leakage: Border Tax Adjustments versus Rebates," RFF Working Paper Series dp-09-02, Resources for the Future.
    25. Christoph Böhringer & Thomas Rutherford, 2002. "Carbon Abatement and International Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(3), pages 391-417, July.
    26. Graham, Paul & Thorpe, Sally & Hogan, Lindsay, 1999. "Non-competitive market behaviour in the international coking coal market," Energy Economics, Elsevier, vol. 21(3), pages 195-212, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Böhringer, Christoph & Garcia-Muros, Xaquin & Cazcarro, Ignacio & Arto, Iñaki, 2017. "The efficiency cost of protective measures in climate policy," Energy Policy, Elsevier, vol. 104(C), pages 446-454.
    2. Christoph Böhringer & Jared C. Carbone & Thomas F. Rutherford, 2018. "Embodied Carbon Tariffs," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(1), pages 183-210, January.
    3. Christoph Bohringer & Knut Einar Rosendahl & Jan Schneider, 2014. "Unilateral Climate Policy: Can OPEC Resolve the Leakage Problem?," The Energy Journal, , vol. 35(4), pages 79-100, October.
    4. Christoph Böhringer & Knut Einar Rosendahl & Halvor Storrøsten, 2021. "Smart hedging against carbon leakage [An overview of the GTAP 9 data base]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 36(107), pages 439-484.
    5. repec:old:wpaper:355 is not listed on IDEAS
    6. repec:zbw:hohpro:355 is not listed on IDEAS
    7. Christoph Böhringer & André Müller & Jan Schneider, 2015. "Carbon Tariffs Revisited," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 629-672.
    8. Antimiani, Alessandro & Costantini, Valeria & Martini, Chiara & Salvatici, Luca & Tommasino, Maria Cristina, 2013. "Assessing alternative solutions to carbon leakage," Energy Economics, Elsevier, vol. 36(C), pages 299-311.
    9. Böhringer, Christoph & Carbone, Jared C. & Rutherford, Thomas F., 2012. "Unilateral climate policy design: Efficiency and equity implications of alternative instruments to reduce carbon leakage," Energy Economics, Elsevier, vol. 34(S2), pages 208-217.
    10. Böhringer, Christoph & Garcia-Muros, Xaquin & Gonzalez-Eguino, Mikel & Rey, Luis, 2017. "US climate policy: A critical assessment of intensity standards," Energy Economics, Elsevier, vol. 68(S1), pages 125-135.
    11. Böhringer, Christoph & Lange, Andreas & Rutherford, Thomas F., 2014. "Optimal emission pricing in the presence of international spillovers: Decomposing leakage and terms-of-trade motives," Journal of Public Economics, Elsevier, vol. 110(C), pages 101-111.
    12. Christoph Böhringer & Jan Schneider & Emmanuel Asane-Otoo, 2016. "Trade In Carbon And The Effectiveness Of Carbon Tariffs," Working Papers V-388-16, University of Oldenburg, Department of Economics, revised Apr 2016.
    13. Böhringer, Christoph & Rosendahl, Knut Einar & Storrøsten, Halvor Briseid, 2017. "Robust policies to mitigate carbon leakage," Journal of Public Economics, Elsevier, vol. 149(C), pages 35-46.
    14. Böhringer, Christoph & Bye, Brita & Fæhn, Taran & Rosendahl, Knut Einar, 2017. "Targeted carbon tariffs: Export response, leakage and welfare," Resource and Energy Economics, Elsevier, vol. 50(C), pages 51-73.
    15. Christoph Böhringer & Carolyn Fischer & Knut Einar Rosendahl, 2011. "Cost-Effective Climate Policy Design: Size Matters," Working Papers V-339-11, University of Oldenburg, Department of Economics, revised Jul 2011.
    16. repec:old:wpaper:340 is not listed on IDEAS
    17. Perdana, Sigit & Vielle, Marc, 2022. "Making the EU Carbon Border Adjustment Mechanism acceptable and climate friendly for least developed countries," Energy Policy, Elsevier, vol. 170(C).
    18. Böhringer, Christoph & Bye, Brita & Fæhn, Taran & Rosendahl, Knut Einar, 2012. "Alternative designs for tariffs on embodied carbon: A global cost-effectiveness analysis," Energy Economics, Elsevier, vol. 34(S2), pages 143-153.
    19. Christoph Böhringer & Brita Brita Bye & Taran Fæhn & Knut Einar Rosendahl, 2015. "Targeted carbon tariffs - Carbon leakage and welfare effects," Working Papers V-376-15, University of Oldenburg, Department of Economics, revised Mar 2015.
    20. Jared C. Carbone & Nicholas Rivers, 2014. "Climate policy and competitiveness: Policy guidance and quantitative evidence," Working Papers 2014-05, Colorado School of Mines, Division of Economics and Business.
    21. Christoph Böhringer & Jared C. Carbone & Thomas F. Rutherford, 2016. "The Strategic Value of Carbon Tariffs," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 28-51, February.
    22. Madison Condon & Ada Ignaciuk, 2013. "Border Carbon Adjustment and International Trade: A Literature Review," OECD Trade and Environment Working Papers 2013/6, OECD Publishing.
    23. Christoph Böhringer & Jan Schneider & Emmanuel Asane-Otoo, 2021. "Trade in Carbon and Carbon Tariffs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 669-708, April.

    More about this item

    Keywords

    emissions leakage; border carbon adjustments; output-based allocation;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • H2 - Public Economics - - Taxation, Subsidies, and Revenue
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.