[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/nys/sunysb/17-06.html
   My bibliography  Save this paper

Additive Nonparametric Instrumental Regressions: A Guide to Implementation

Author

Listed:
  • Samuele Centorrino
  • Frederique Feve
  • Jean-Pierre Florens
Abstract
We present a review on the implementation of regularization methods for the estimation of additive nonparametric regression models with instrumental variables. We consider various versions of Tikhonov, Landweber-Fridman and Sieve (Petrov-Galerkin) regularization. We review data-driven techniques for the sequential choice of the smoothing and the regularization parameters. Through Monte-Carlo simulations, we discuss the finite sample properties of each regularization method for different smoothness properties of the regression function. Finally, we present an application to the estimation of the Engel curve for food in a sample of rural households in Pakistan, where a partially linear specification is described that allows one to embed other exogenous covariates.

Suggested Citation

  • Samuele Centorrino & Frederique Feve & Jean-Pierre Florens, 2017. "Additive Nonparametric Instrumental Regressions: A Guide to Implementation," Department of Economics Working Papers 17-06, Stony Brook University, Department of Economics.
  • Handle: RePEc:nys:sunysb:17-06
    as

    Download full text from publisher

    File URL: http://www.stonybrook.edu/commcms/economics/research/papers/2017/Centorrino_Feve_Florens2017.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    2. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    5. Johannes, J. & Van Bellegem, S. & Vanhems, A., 2013. "Iterative regularisation in nonparametric instrumental regression," LIDAM Reprints ISBA 2013003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Fève, Frédérique & Florens, Jean-Pierre, 2014. "Non parametric analysis of panel data models with endogenous variables," Journal of Econometrics, Elsevier, vol. 181(2), pages 151-164.
    7. Johannes, Jan & Schwarz, Maik, 2011. "Partially adaptive nonparametric instrumental regression by model selection," LIDAM Reprints ISBA 2011049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Horowitz, Joel L. & Lee, Sokbae, 2012. "Uniform confidence bands for functions estimated nonparametrically with instrumental variables," Journal of Econometrics, Elsevier, vol. 168(2), pages 175-188.
    9. Cardot, Herve & Johannes, Jan, 2010. "Thresholding projection estimators in functional linear models," LIDAM Reprints ISBA 2010034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sébastien, 2011. "Identification And Estimation By Penalization In Nonparametric Instrumental Regression," Econometric Theory, Cambridge University Press, vol. 27(3), pages 472-496, June.
    11. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2013. "On the Testability of Identification in Some Nonparametric Models With Endogeneity," Econometrica, Econometric Society, vol. 81(6), pages 2535-2559, November.
    12. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sebastien, 2011. "Identification and estimation by penalization in Nonparametric Instrumental Regression," LIDAM Reprints ISBA 2011046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Sonia Bhalotra & Cliff Attfield, 1998. "Intrahousehold resource allocation in rural Pakistan: a semiparametric analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 463-480.
    14. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    15. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    16. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2010. "Iterative Regularization in Nonparametric Instrumental Regression," TSE Working Papers 10-184, Toulouse School of Economics (TSE).
    17. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    18. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    19. Deniz Ozabaci & Daniel J. Henderson & Liangjun Su, 2014. "Additive Nonparametric Regression in the Presence of Endogenous Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 555-575, October.
    20. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    21. Andres Santos, 2012. "Inference in Nonparametric Instrumental Variables With Partial Identification," Econometrica, Econometric Society, vol. 80(1), pages 213-275, January.
    22. Cardot, Hervé & Johannes, Jan, 2010. "Thresholding projection estimators in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 395-408, February.
    23. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    24. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    25. FLORENS, Jean-Pierre & JOHANNES, Jan & VAN BELLEGEM, Sébastien, 2011. "Identification and estimation by penalization in nonparametric instrumental regression," LIDAM Reprints CORE 2320, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    26. Hoderlein, Stefan & Holzmann, Hajo, 2011. "Demand Analysis As An Ill-Posed Inverse Problem With Semiparametric Specification," Econometric Theory, Cambridge University Press, vol. 27(3), pages 609-638, June.
    27. Senay Sokullu, 2012. "Nonparametric Analysis of Two-Sided Markets," Bristol Economics Discussion Papers 12/628, School of Economics, University of Bristol, UK.
    28. Horowitz, Joel L., 2014. "Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter," Journal of Econometrics, Elsevier, vol. 180(2), pages 158-173.
    29. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    30. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroyuki Kawakatsu, 2022. "Local projection variance impulse response," Empirical Economics, Springer, vol. 62(3), pages 1219-1244, March.
    2. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    3. Emir Malikov & Shunan Zhao & Subal C. Kumbhakar, 2020. "Estimation of firm‐level productivity in the presence of exports: Evidence from China's manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 457-480, June.
    4. Samuele CENTORRINO & Jeffrey S. RACINE, 2017. "Semiparametric Varying Coefficient Models with Endogenous Covariates," Annals of Economics and Statistics, GENES, issue 128, pages 261-295.
    5. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
    6. Jad Beyhum & Elia Lapenta & Pascal Lavergne, 2023. "One-step smoothing splines instrumental regression," Papers 2307.14867, arXiv.org, revised Apr 2024.
    7. Andrii Babii & Jean-Pierre Florens, 2017. "Are Unobservables Separable?," Papers 1705.01654, arXiv.org, revised Mar 2021.
    8. Hoshino, Tadao, 2022. "Sieve IV estimation of cross-sectional interaction models with nonparametric endogenous effect," Journal of Econometrics, Elsevier, vol. 229(2), pages 263-275.
    9. Samuele Centorrino & Jean-Pierre Florens & Jean-Michel Loubes, 2022. "Fairness constraint in Structural Econometrics and Application to fair estimation using Instrumental Variables," Papers 2202.08977, arXiv.org.
    10. Senay Sokullu & Irene Botosaru & Chris Muris, 2022. "Time-Varying Linear Transformation Models with Fixed Effects and Endogeneity for Short Panels," Bristol Economics Discussion Papers 22/756, School of Economics, University of Bristol, UK.
    11. Botosaru, Irene, 2023. "Time-varying unobserved heterogeneity in earnings shocks," Journal of Econometrics, Elsevier, vol. 235(2), pages 1378-1393.
    12. Escanciano, Juan Carlos & Li, Wei, 2021. "Optimal Linear Instrumental Variables Approximations," Journal of Econometrics, Elsevier, vol. 221(1), pages 223-246.
    13. Liu, Chu-An & Tao, Jing, 2016. "Model selection and model averaging in nonparametric instrumental variables models," MPRA Paper 69492, University Library of Munich, Germany.
    14. Samuele Centorrino & Jean-Pierre Florens, 2014. "Nonparametric Instrumental Variable Estimation of Binary Response Models," Department of Economics Working Papers 14-07, Stony Brook University, Department of Economics.
    15. Shunan Zhao & Bing Qian & Subal C. Kumbhakar, 2020. "Estimation of productivity and markups with price dispersion: Evidence from Chinese manufacturing during economic transition," Southern Economic Journal, John Wiley & Sons, vol. 87(2), pages 666-699, October.
    16. Beyhum, Jad & Lapenta, Elia & Lavergne, Pascal, 2023. "One-step nonparametric instrumental regression using smoothing splines," TSE Working Papers 23-1467, Toulouse School of Economics (TSE).
    17. De Monte Enrico, 2024. "Nonparametric Instrumental Regression with Two-Way Fixed Effects," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 49-66, January.
    18. Jean-Pierre Florens & Elia Lapenta, 2022. "Partly Linear Instrumental Variables Regressions without Smoothing on the Instruments," Papers 2212.11012, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    2. Asin, Nicolas & Johannes, Jan, 2016. "Adaptive non-parametric instrumental regression in the presence of dependence," LIDAM Discussion Papers ISBA 2016015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Babii, Andrii, 2020. "Honest Confidence Sets In Nonparametric Iv Regression And Other Ill-Posed Models," Econometric Theory, Cambridge University Press, vol. 36(4), pages 658-706, August.
    4. Escanciano, Juan Carlos & Li, Wei, 2021. "Optimal Linear Instrumental Variables Approximations," Journal of Econometrics, Elsevier, vol. 221(1), pages 223-246.
    5. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    6. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    7. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    8. Jad Beyhum & Elia Lapenta & Pascal Lavergne, 2023. "One-step smoothing splines instrumental regression," Papers 2307.14867, arXiv.org, revised Apr 2024.
    9. Beyhum, Jad & Lapenta, Elia & Lavergne, Pascal, 2023. "One-step nonparametric instrumental regression using smoothing splines," TSE Working Papers 23-1467, Toulouse School of Economics (TSE).
    10. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.
    11. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    12. Samuele CENTORRINO & Jeffrey S. RACINE, 2017. "Semiparametric Varying Coefficient Models with Endogenous Covariates," Annals of Economics and Statistics, GENES, issue 128, pages 261-295.
    13. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    14. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2023. "Minimax Instrumental Variable Regression and $L_2$ Convergence Guarantees without Identification or Closedness," Papers 2302.05404, arXiv.org.
    15. Xiaohong Chen & Demian Pouzo, 2014. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," CeMMAP working papers 38/14, Institute for Fiscal Studies.
    16. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Chen, Qihui, 2021. "Robust and optimal estimation for partially linear instrumental variables models with partial identification," Journal of Econometrics, Elsevier, vol. 221(2), pages 368-380.
    18. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    19. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    20. Fève, Frédérique & Florens, Jean-Pierre, 2014. "Non parametric analysis of panel data models with endogenous variables," Journal of Econometrics, Elsevier, vol. 181(2), pages 151-164.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nys:sunysb:17-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/edstous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.