[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2019-4.html
   My bibliography  Save this paper

Nonparametric Predictive Regressions for Stock Return Prediction

Author

Listed:
  • Tingting Cheng
  • Jiti Gao
  • Oliver Linton
Abstract
We propose two new nonparametric predictive models: the multi-step nonparametric predictive regression model and the multi-step additive predictive regression model, in which the predictive variables are locally stationary time series. We define estimation methods and establish the large sample properties of these methods in the short horizon and the long horizon case. We apply our methods to stock return prediction using a number of standard predictors such as dividend yield. The empirical results show that all of these models can substantially outperform the traditional linear predictive regression model in terms of both in-sample and out-of-sample performance. In addition, we find that these models can always beat the historical mean model in terms of in-sample fitting, and also for some cases in terms of the out-of-sample forecasting. We also propose a trading strategy based on our methodology and show that it beats the buy and hold stategy provided the tuning parameters are well chosen.

Suggested Citation

  • Tingting Cheng & Jiti Gao & Oliver Linton, 2019. "Nonparametric Predictive Regressions for Stock Return Prediction," Monash Econometrics and Business Statistics Working Papers 4/19, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2019-4
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/wp04-2019.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dong, Chaohua & Linton, Oliver, 2018. "Additive nonparametric models with time variable and both stationary and nonstationary regressors," Journal of Econometrics, Elsevier, vol. 207(1), pages 212-236.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Hansen, Lars Peter & Hodrick, Robert J, 1980. "Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis," Journal of Political Economy, University of Chicago Press, vol. 88(5), pages 829-853, October.
    4. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    5. Nielsen, Jens Perch & Sperlich, Stefan, 2003. "Prediction of Stock Returns: A New Way to Look at It," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 399-417, November.
    6. Xia, Yingcun & Li, W. K., 2002. "Asymptotic Behavior of Bandwidth Selected by the Cross-Validation Method for Local Polynomial Fitting," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 265-287, November.
    7. Scholz, Michael & Sperlich, Stefan & Nielsen, Jens Perch, 2016. "Nonparametric long term prediction of stock returns with generated bond yields," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 82-96.
    8. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    9. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    10. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    11. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    12. Scholz, Michael & Nielsen, Jens Perch & Sperlich, Stefan, 2015. "Nonparametric prediction of stock returns based on yearly data: The long-term view," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 143-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Chaohua & Linton, Oliver & Peng, Bin, 2021. "A weighted sieve estimator for nonparametric time series models with nonstationary variables," Journal of Econometrics, Elsevier, vol. 222(2), pages 909-932.
    2. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2019. "Machine Learning for Forecasting Excess Stock Returns The Five-Year-View," Graz Economics Papers 2019-06, University of Graz, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Cheng & Jiti Gao & Oliver Linton, 2017. "Multi-step non- and semi-parametric predictive regressions for short and long horizon stock return prediction," Monash Econometrics and Business Statistics Working Papers 13/17, Monash University, Department of Econometrics and Business Statistics.
    2. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    3. Parastoo Mousavi, 2021. "Debt-by-Price Ratio, End-of-Year Economic Growth, and Long-Term Prediction of Stock Returns," Mathematics, MDPI, vol. 9(13), pages 1-18, July.
    4. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    5. Stig V. Møller & Jesper Rangvid, 2018. "Global Economic Growth and Expected Returns Around the World: The End-of-the-Year Effect," Management Science, INFORMS, vol. 64(2), pages 573-591, February.
    6. Chava, Sudheer & Gallmeyer, Michael & Park, Heungju, 2015. "Credit conditions and stock return predictability," Journal of Monetary Economics, Elsevier, vol. 74(C), pages 117-132.
    7. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    8. Zhang, Han & Guo, Bin & Liu, Lanbiao, 2022. "The time-varying bond risk premia in China," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 51-76.
    9. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2021. "Short-Term Exuberance and Long-Term Stability: A Simultaneous Optimization of Stock Return Predictions for Short and Long Horizons," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    10. repec:grz:wpaper:2012-02 is not listed on IDEAS
    11. Park, Dojoon & Hahn, Jaehoon & Eom, Young Ho, 2024. "Predicting the equity premium with financial ratios: A comprehensive look over a long period in Korea," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
    12. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    13. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    14. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    15. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    16. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    17. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    18. Li, Yan & Ng, David T. & Swaminathan, Bhaskaran, 2013. "Predicting market returns using aggregate implied cost of capital," Journal of Financial Economics, Elsevier, vol. 110(2), pages 419-436.
    19. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    20. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Tran, Vuong Thao, 2018. "Can economic policy uncertainty predict stock returns? Global evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 134-150.
    21. repec:oup:qjecon:v:132:y:2016:i:1:p:367-433. is not listed on IDEAS
    22. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.

    More about this item

    Keywords

    kernel estimator; locally stationary process; series estimator; stock return prediction.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2019-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.