[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/mod/wcefin/0016.html
   My bibliography  Save this paper

Differential Evolution and Combinatorial Search for Constrained Index Tracking

Author

Listed:
  • Thiemo Krink
  • Stefan Mittnik
  • Sandra Paterlini
Abstract
Index tracking is a valuable low-cost alternative to active portfolio management. The implementation of a quantitative approach, however, is a major challenge from an optimization perspective. The optimal selection of a group of assets that can replicate the index of a much larger portfolio requires both to find the optimal subset of assets and to fine-tune their weights. The former is a combinatorial, the latter a continuous numerical problem. Both problems need to be addressed simultaneously, because whether or not a selection of assets is promising depends on the allocation weights and vice versa. Moreover, the problem is usually of high dimension. Typically, an optimal subset of 30-150 positions out of 100-600 need to be selected and their weights determined. Search heuristics can be a viable and valuable alternative to traditional methods, which often cannot deal with the problem. In this paper, we propose a new optimization method, which is partly based on Differential Evolution (DE) and on combinatorial search. The main advantage of our method is that it can tackle index tracking problem as complex as it is, generating accurate and robust results.

Suggested Citation

  • Thiemo Krink & Stefan Mittnik & Sandra Paterlini, 2009. "Differential Evolution and Combinatorial Search for Constrained Index Tracking," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0016, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
  • Handle: RePEc:mod:wcefin:0016
    as

    Download full text from publisher

    File URL: http://155.185.68.2/CefinPaper/CEFIN-WP16.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thiemo Krink & Sandra Paterlini, 2008. "Differential Evolution for Multiobjective Portfolio Optimization," Center for Economic Research (RECent) 021, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    2. Gunter Dueck & Peter Winker, 1992. "New concepts and algorithms for portfolio choice," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 8(3), pages 159-178, September.
    3. Beasley, J. E. & Meade, N. & Chang, T. -J., 2003. "An evolutionary heuristic for the index tracking problem," European Journal of Operational Research, Elsevier, vol. 148(3), pages 621-643, August.
    4. Sergio Focardi & Frank Fabozzi, 2004. "A methodology for index tracking based on time-series clustering," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 417-425.
    5. Paterlini, Sandra & Krink, Thiemo, 2006. "Differential evolution and particle swarm optimisation in partitional clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1220-1247, March.
    6. Krink, Thiemo & Paterlini, Sandra & Resti, Andrea, 2007. "Using differential evolution to improve the accuracy of bank rating systems," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 68-87, September.
    7. Rudolf, Markus & Wolter, Hans-Jurgen & Zimmermann, Heinz, 1999. "A linear model for tracking error minimization," Journal of Banking & Finance, Elsevier, vol. 23(1), pages 85-103, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Scozzari & Fabio Tardella & Sandra Paterlini & Thiemo Krink, 2013. "Exact and heuristic approaches for the index tracking problem with UCITS constraints," Annals of Operations Research, Springer, vol. 205(1), pages 235-250, May.
    2. Lyra, M. & Paha, J. & Paterlini, S. & Winker, P., 2010. "Optimization heuristics for determining internal rating grading scales," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2693-2706, November.
    3. Li, Qian & Bao, Liang, 2014. "Enhanced index tracking with multiple time-scale analysis," Economic Modelling, Elsevier, vol. 39(C), pages 282-292.
    4. Doumpos, M. & Marinakis, Y. & Marinaki, M. & Zopounidis, C., 2009. "An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method," European Journal of Operational Research, Elsevier, vol. 199(2), pages 496-505, December.
    5. Paskalis Glabadanidis, 2020. "Portfolio Strategies to Track and Outperform a Benchmark," JRFM, MDPI, vol. 13(8), pages 1-26, August.
    6. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    7. Yu Zheng & Bowei Chen & Timothy M. Hospedales & Yongxin Yang, 2019. "Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach," Papers 1911.05052, arXiv.org, revised Nov 2019.
    8. Yu Zheng & Timothy M. Hospedales & Yongxin Yang, 2018. "Diversity and Sparsity: A New Perspective on Index Tracking," Papers 1809.01989, arXiv.org, revised Feb 2020.
    9. James Primbs & Chang Sung, 2008. "A Stochastic Receding Horizon Control Approach to Constrained Index Tracking," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 15(1), pages 3-24, March.
    10. Corielli, Francesco & Marcellino, Massimiliano, 2006. "Factor based index tracking," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2215-2233, August.
    11. Strub, O. & Baumann, P., 2018. "Optimal construction and rebalancing of index-tracking portfolios," European Journal of Operational Research, Elsevier, vol. 264(1), pages 370-387.
    12. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    13. Marianna Lyra & Akwum Onwunta & Peter Winker, 2015. "Threshold accepting for credit risk assessment and validation," Journal of Banking Regulation, Palgrave Macmillan, vol. 16(2), pages 130-145, April.
    14. Dietmar Maringer & Olufemi Oyewumi, 2007. "Index tracking with constrained portfolios," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(1‐2), pages 57-71, January.
    15. Rubén Ruiz-Torrubiano & Alberto Suárez, 2009. "A hybrid optimization approach to index tracking," Annals of Operations Research, Springer, vol. 166(1), pages 57-71, February.
    16. Bj�rn Fastrich & Sandra Paterlini & Peter Winker, 2014. "Cardinality versus q -norm constraints for index tracking," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 2019-2032, November.
    17. Meihua Wang & Chengxian Xu & Fengmin Xu & Hongang Xue, 2012. "A mixed 0–1 LP for index tracking problem with CVaR risk constraints," Annals of Operations Research, Springer, vol. 196(1), pages 591-609, July.
    18. Tingting Yang & Xiaoxia Huang, 2022. "A New Portfolio Optimization Model Under Tracking-Error Constraint with Linear Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 723-747, November.
    19. Marianna Lyra, 2010. "Heuristic Strategies in Finance – An Overview," Working Papers 045, COMISEF.
    20. Jiang, Pan & Perez, M. Fabricio, 2021. "Follow the leader: Index tracking with factor models," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 337-350.

    More about this item

    Keywords

    Index Tracking; Passive Asset Management; Differential Evolution; Combinatorial Search;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mod:wcefin:0016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giuseppe Marotta (email available below). General contact details of provider: https://edirc.repec.org/data/demodit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.