[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.03653.html
   My bibliography  Save this paper

Simulation Methods for Robust Risk Assessment and the Distorted Mix Approach

Author

Listed:
  • Sojung Kim
  • Stefan Weber
Abstract
Uncertainty requires suitable techniques for risk assessment. Combining stochastic approximation and stochastic average approximation, we propose an efficient algorithm to compute the worst case average value at risk in the face of tail uncertainty. Dependence is modelled by the distorted mix method that flexibly assigns different copulas to different regions of multivariate distributions. We illustrate the application of our approach in the context of financial markets and cyber risk.

Suggested Citation

  • Sojung Kim & Stefan Weber, 2020. "Simulation Methods for Robust Risk Assessment and the Distorted Mix Approach," Papers 2009.03653, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2009.03653
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.03653
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    2. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    3. Weber, Stefan, 2018. "Solvency II, or how to sweep the downside risk under the carpet," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 191-200.
    4. Bardou O. & Frikha N. & Pagès G., 2009. "Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 173-210, January.
    5. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    6. F. W. Meng & J. Sun & M. Goh, 2010. "Stochastic Optimization Problems with CVaR Risk Measure and Their Sample Average Approximation," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 399-418, August.
    7. Hailin Sun & Huifu Xu & Yong Wang, 2014. "Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 257-284, April.
    8. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    9. Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
    10. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    11. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2020. "Computational aspects of robust optimized certainty equivalents and option pricing," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 287-309, January.
    12. Mark Broadie & Deniz Cicek & Assaf Zeevi, 2011. "General Bounds and Finite-Time Improvement for the Kiefer-Wolfowitz Stochastic Approximation Algorithm," Operations Research, INFORMS, vol. 59(5), pages 1211-1224, October.
    13. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    14. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    15. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    16. Jörn Dunkel & Stefan Weber, 2010. "Stochastic Root Finding and Efficient Estimation of Convex Risk Measures," Operations Research, INFORMS, vol. 58(5), pages 1505-1521, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soren Bettels & Stefan Weber, 2024. "An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models," Papers 2408.02401, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    2. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    3. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    4. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    5. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    6. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    7. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    8. Fritzsch, Simon & Timphus, Maike & Weiß, Gregor, 2024. "Marginals versus copulas: Which account for more model risk in multivariate risk forecasting?," Journal of Banking & Finance, Elsevier, vol. 158(C).
    9. Zhaolin Hu & Dali Zhang, 2018. "Utility‐based shortfall risk: Efficient computations via Monte Carlo," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 378-392, August.
    10. Kerstin Awiszus & Thomas Knispel & Irina Penner & Gregor Svindland & Alexander Vo{ss} & Stefan Weber, 2022. "Modeling and Pricing Cyber Insurance -- Idiosyncratic, Systematic, and Systemic Risks," Papers 2209.07415, arXiv.org, revised Dec 2022.
    11. Zhaolin Hu & L. Jeff Hong, 2022. "Robust Simulation with Likelihood-Ratio Constrained Input Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2350-2367, July.
    12. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    13. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    14. Anthony Coache & Sebastian Jaimungal, 2024. "Robust Reinforcement Learning with Dynamic Distortion Risk Measures," Papers 2409.10096, arXiv.org.
    15. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    16. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    17. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    18. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    19. Yu Feng & Ralph Rudd & Christopher Baker & Qaphela Mashalaba & Melusi Mavuso & Erik Schlögl, 2021. "Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models," Risks, MDPI, vol. 9(1), pages 1-20, January.
    20. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.03653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.