[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.07892.html
   My bibliography  Save this paper

Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories

Author

Listed:
  • Christopher Kath
  • Florian Ziel
Abstract
Optimal execution, i.e., the determination of the most cost-effective way to trade volumes in continuous trading sessions, has been a topic of interest in the equity trading world for years. Electricity intraday trading slowly follows this trend but is far from being well-researched. The underlying problem is a very complex one. Energy traders, producers, and electricity wholesale companies receive various position updates from customer businesses, renewable energy production, or plant outages and need to trade these positions in intraday markets. They have a variety of options when it comes to position sizing or timing. Is it better to trade all amounts at once? Should they split orders into smaller pieces? Taking the German continuous hourly intraday market as an example, this paper derives an appropriate model for electricity trading. We present our results from an out-of-sample study and differentiate between simple benchmark models and our more refined optimization approach that takes into account order book depth, time to delivery, and different trading regimes like XBID (Cross-Border Intraday Project) trading. Our paper is highly relevant as it contributes further insight into the academic discussion of algorithmic execution in continuous intraday markets and serves as an orientation for practitioners. Our initial results suggest that optimal execution strategies have a considerable monetary impact.

Suggested Citation

  • Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:2009.07892
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.07892
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    2. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    3. Olivier Guéant & Royer Guillaume, 2014. "VWAP execution and guaranteed VWAP," Post-Print hal-01393121, HAL.
    4. Katarzyna Maciejowska & Weronika Nitka & Tomasz Weron, 2019. "Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits," Energies, MDPI, vol. 12(4), pages 1-15, February.
    5. Christopher Kath, 2019. "Modeling Intraday Markets under the New Advances of the Cross-Border Intraday Project (XBID): Evidence from the German Intraday Market," Energies, MDPI, vol. 12(22), pages 1-35, November.
    6. Olivier Gu'eant & Guillaume Royer, 2013. "VWAP execution and guaranteed VWAP," Papers 1306.2832, arXiv.org, revised May 2014.
    7. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    8. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    9. Hendershott, Terrence & Riordan, Ryan, 2013. "Algorithmic Trading and the Market for Liquidity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1001-1024, August.
    10. Humphery-Jenner, Mark L., 2011. "Optimal VWAP trading under noisy conditions," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2319-2329, September.
    11. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    12. René Aïd & P. Gruet & H. Pham, 2016. "An optimal trading problem in intraday electricity markets," Post-Print hal-01609481, HAL.
    13. Gaillard, Pierre & Goude, Yannig & Nedellec, Raphaël, 2016. "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1038-1050.
    14. Narajewski, Michał & Ziel, Florian, 2020. "Econometric modelling and forecasting of intraday electricity prices," Journal of Commodity Markets, Elsevier, vol. 19(C).
    15. Tim Janke & Florian Steinke, 2019. "Forecasting the Price Distribution of Continuous Intraday Electricity Trading," Energies, MDPI, vol. 12(22), pages 1-14, November.
    16. Koch, Christopher & Hirth, Lion, 2019. "Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germany's electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.
    18. Christoph Frei & Nicholas Westray, 2015. "Optimal Execution Of A Vwap Order: A Stochastic Control Approach," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 612-639, July.
    19. Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
    20. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    21. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    22. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    23. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    24. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    25. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    26. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siyuan Li & Hui Niu & Jiani Lu & Peng Liu, 2024. "Joint Learning of Volume Scheduling and Order Placement Policies for Optimal Order Execution," Mathematics, MDPI, vol. 12(21), pages 1-17, November.
    2. Narajewski, Michał & Ziel, Florian, 2022. "Optimal bidding in hourly and quarter-hourly electricity price auctions: Trading large volumes of power with market impact and transaction costs," Energy Economics, Elsevier, vol. 110(C).
    3. Simon Hirsch & Florian Ziel, 2022. "Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution," Papers 2211.13002, arXiv.org.
    4. Thomas Kuppelwieser & David Wozabal, 2023. "Intraday power trading: toward an arms race in weather forecasting?," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 57-83, March.
    5. Micha{l} Narajewski & Florian Ziel, 2021. "Optimal bidding in hourly and quarter-hourly electricity price auctions: trading large volumes of power with market impact and transaction costs," Papers 2104.14204, arXiv.org, revised Feb 2022.
    6. Demir, Sumeyra & Stappers, Bart & Kok, Koen & Paterakis, Nikolaos G., 2022. "Statistical arbitrage trading on the intraday market using the asynchronous advantage actor–critic method," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    2. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    3. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    4. Rainer Baule & Michael Naumann, 2021. "Volatility and Dispersion of Hourly Electricity Contracts on the German Continuous Intraday Market," Energies, MDPI, vol. 14(22), pages 1-24, November.
    5. Micha{l} Narajewski & Florian Ziel, 2021. "Optimal bidding in hourly and quarter-hourly electricity price auctions: trading large volumes of power with market impact and transaction costs," Papers 2104.14204, arXiv.org, revised Feb 2022.
    6. Li, Wei & Paraschiv, Florentina, 2022. "Modelling the evolution of wind and solar power infeed forecasts," Journal of Commodity Markets, Elsevier, vol. 25(C).
    7. Serafin, Tomasz & Marcjasz, Grzegorz & Weron, Rafał, 2022. "Trading on short-term path forecasts of intraday electricity prices," Energy Economics, Elsevier, vol. 112(C).
    8. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    9. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    10. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    11. Simon Hirsch & Florian Ziel, 2023. "Multivariate Simulation-based Forecasting for Intraday Power Markets: Modelling Cross-Product Price Effects," Papers 2306.13419, arXiv.org.
    12. Michał Narajewski, 2022. "Probabilistic Forecasting of German Electricity Imbalance Prices," Energies, MDPI, vol. 15(14), pages 1-17, July.
    13. Narajewski, Michał & Ziel, Florian, 2022. "Optimal bidding in hourly and quarter-hourly electricity price auctions: Trading large volumes of power with market impact and transaction costs," Energy Economics, Elsevier, vol. 110(C).
    14. Christopher Kath & Weronika Nitka & Tomasz Serafin & Tomasz Weron & Przemysław Zaleski & Rafał Weron, 2020. "Balancing Generation from Renewable Energy Sources: Profitability of an Energy Trader," Energies, MDPI, vol. 13(1), pages 1-15, January.
    15. Micha{l} Narajewski, 2022. "Probabilistic forecasting of German electricity imbalance prices," Papers 2205.11439, arXiv.org.
    16. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.
    17. Grzegorz Marcjasz & Bartosz Uniejewski & Rafał Weron, 2020. "Beating the Naïve—Combining LASSO with Naïve Intraday Electricity Price Forecasts," Energies, MDPI, vol. 13(7), pages 1-16, April.
    18. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    19. Michał Narajewski & Florian Ziel, 2019. "Estimation and Simulation of the Transaction Arrival Process in Intraday Electricity Markets," Energies, MDPI, vol. 12(23), pages 1-16, November.
    20. Maciejowska, Katarzyna & Nitka, Weronika & Weron, Tomasz, 2021. "Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices," Energy Economics, Elsevier, vol. 99(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.07892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.