[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/aah/create/2015-07.html
   My bibliography  Save this paper

Option Valuation with Observable Volatility and Jump Dynamics

Author

Listed:
  • Peter Christoffersen

    (University of Toronto, Rotman School of Management and CREATES)

  • Bruno Feunou

    (Bank of Canada)

  • Yoontae Jeon

    (University of Toronto, Rotman School of Management)

Abstract
Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared with standard benchmarks.

Suggested Citation

  • Peter Christoffersen & Bruno Feunou & Yoontae Jeon, 2014. "Option Valuation with Observable Volatility and Jump Dynamics," CREATES Research Papers 2015-07, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2015-07
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/15/rp15_07.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    2. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    3. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    4. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    5. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    7. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    9. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    10. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    11. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    12. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    13. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    14. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    15. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    16. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    17. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    18. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    19. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    20. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
    21. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    22. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    23. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    24. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    25. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    26. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    27. Jia Li, 2013. "Robust Estimation and Inference for Jumps in Noisy High Frequency Data: A Local‐to‐Continuity Theory for the Pre‐Averaging Method," Econometrica, Econometric Society, vol. 81(4), pages 1673-1693, July.
    28. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    29. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    30. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    31. repec:bla:jfinan:v:59:y:2004:i:3:p:1405-1440 is not listed on IDEAS
    32. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    33. Pedro Santa-Clara & Shu Yan, 2010. "Crashes, Volatility, and the Equity Premium: Lessons from S&P 500 Options," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 435-451, May.
    34. Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    2. Zhiyuan Pan & Yudong Wang & Li Liu, 2021. "Realized bipower variation, jump components, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1933-1958, December.
    3. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "European quanto option pricing in presence of liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 230-244.
    4. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    5. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun & Zhang, Yue, 2019. "Pricing discrete barrier options under jump-diffusion model with liquidity risk," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 347-368.
    6. Gongyue Jiang & Gaoxiu Qiao & Lu Wang & Feng Ma, 2024. "Hybrid forecasting of crude oil volatility index: The cross‐market effects of stock market jumps," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2378-2398, September.
    7. Pan, Zhiyuan & Shuai, Jiangyu & Liang, Zhilei & Sun, Xianchao, 2022. "Jump dynamics, spillover effect and option valuation," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    8. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam, 2019. "An empirical examination of the jump and diffusion aspects of asset pricing: Japanese evidence," Working Papers 2019-02, University of Tasmania, Tasmanian School of Business and Economics.
    9. Xinglin Yang, 2018. "Good jump, bad jump, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1097-1125, September.
    10. Gaoxiu Qiao & Gongyue Jiang, 2023. "VIX futures pricing based on high‐frequency VIX: A hybrid approach combining SVR with parametric models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1238-1260, September.
    11. Feunou, Bruno & Okou, Cédric, 2019. "Good Volatility, Bad Volatility, and Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(2), pages 695-727, April.
    12. Fang Liang & Lingshan Du, 2024. "Option pricing with dynamic conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1154-1188, July.
    13. Michael L. McIntyre, 2022. "Capital structure in an option-theoretic setting," SN Business & Economics, Springer, vol. 2(8), pages 1-24, August.
    14. Biao Guo & Hai Lin, 2020. "Volatility and jump risk in option returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1767-1792, November.
    15. Tianyi Wang & Sicong Cheng & Fangsheng Yin & Mei Yu, 2022. "Overnight volatility, realized volatility, and option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1264-1283, July.
    16. Qiao, Gaoxiu & Ma, Xuekun & Jiang, Gongyue & Wang, Lu, 2024. "Crude oil volatility index forecasting: New evidence based on positive and negative jumps from Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 415-437.
    17. Juho Kanniainen & Martin Magris, 2018. "Option market (in)efficiency and implied volatility dynamics after return jumps," Papers 1810.12200, arXiv.org.
    18. Yipeng Yang & Allanus Tsoi, 2016. "A Level Set Analysis and A Nonparametric Regression on S&P 500 Daily Return," IJFS, MDPI, vol. 4(1), pages 1-24, February.
    19. Qiao, Gaoxiu & Jiang, Gongyue & Yang, Jiyu, 2022. "VIX term structure forecasting: New evidence based on the realized semi-variances," International Review of Financial Analysis, Elsevier, vol. 82(C).
    20. Gongyue Jiang & Gaoxiu Qiao & Feng Ma & Lu Wang, 2022. "Directly pricing VIX futures with observable dynamic jumps based on high‐frequency VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1518-1548, August.
    21. Fang Liang & Lingshan Du & Zhuo Huang, 2023. "Option pricing with overnight and intraday volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1576-1614, November.
    22. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    23. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Feunou, Bruno & Jacobs, Kris & Meddahi, Nour, 2014. "The Economic Value of Realized Volatility: Using High-Frequency Returns for Option Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 663-697, June.
    2. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    3. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    5. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    6. Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
    7. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    8. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    9. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    10. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    11. Hung, Jui-Cheng, 2015. "Evaluation of realized multi-power variations in minimum variance hedging," Economic Modelling, Elsevier, vol. 51(C), pages 672-679.
    12. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    14. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    15. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    16. Fang Liang & Lingshan Du & Zhuo Huang, 2023. "Option pricing with overnight and intraday volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1576-1614, November.
    17. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    18. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    19. Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
    20. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.

    More about this item

    Keywords

    Dynamic volatility; dynamic jumps; realized volatility; realized jumps;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2015-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.