[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/cep/stiecm/483.html
   My bibliography  Save this paper

The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives

Author

Listed:
  • Yoshihiko Nishiyama
  • Peter M Robinson
Abstract
In a number of semiparametric models, smoothing seems necessary in order to obtain estimates of the parametric component which are asymptotically normal and converge at parametric rate. However, smoothing can inflate the error in the normal approximation, so that refined approximations are of interest, especially in sample sizes that are not enormous. We show that a bootstrap distribution achieves a valid Edgeworth correction in case of density-weighted averaged derivative estimates of semiparametric index models. Approaches to bias-reduction are discussed. We also develop a higher order expansion, to show that the bootstrap achieves a further reduction in size distortion in case of two-sided testing. The finite sample performance of the methods is investigated by means of Monte Carlo simulations from a Tobit model.

Suggested Citation

  • Yoshihiko Nishiyama & Peter M Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," STICERD - Econometrics Paper Series 483, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stiecm:483
    as

    Download full text from publisher

    File URL: https://sticerd.lse.ac.uk/dps/em/em483.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. P. M. Robinson, 1989. "Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 56(4), pages 511-534.
    2. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    3. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    4. HÄRDLE, Wolfgang & HART, Jeffrey & MARRON, Steve & TSYBAKOV, Alexander, 1992. "Bandwith choice for average derivative estimation," LIDAM Reprints CORE 977, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    6. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    7. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    8. Joel L. Horowitz, 1996. "Bootstrap Methods in Econometrics: Theory and Numerical Performance," Econometrics 9602009, University Library of Munich, Germany, revised 05 Mar 1996.
    9. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    10. Arcones, Miguel A. & Giné, Evarist, 1994. "U-processes indexed by Vapnik-Cervonenkis classes of functions with applications to asymptotics and bootstrap of U-statistics with estimated parameters," Stochastic Processes and their Applications, Elsevier, vol. 52(1), pages 17-38, August.
    11. Nishiyama, Y & Robinson, Peter, 1999. "Studentization in Edgworth expansions for estimates of semiparametric index models," LSE Research Online Documents on Economics 2095, London School of Economics and Political Science, LSE Library.
    12. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    13. Horowitz, Joel L., 2002. "Bootstrap critical values for tests based on the smoothed maximum score estimator," Journal of Econometrics, Elsevier, vol. 111(2), pages 141-167, December.
    14. Robinson, P M, 1995. "The Normal Approximation for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 63(3), pages 667-680, May.
    15. Hardle, W. & Hart, J. & Marron, J. & Tsybakov, A., 1991. "Bandwidth choice for average derivative estimation," LIDAM Discussion Papers CORE 1991049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matias D. Cattaneo & Max H. Farrell & Michael Jansson & Ricardo Masini, 2022. "Higher-order Refinements of Small Bandwidth Asymptotics for Density-Weighted Average Derivative Estimators," Papers 2301.00277, arXiv.org, revised Feb 2024.
    2. Marcia M Schafgans & Victoria Zinde-Walshyz, 2008. "Smoothness Adaptive AverageDerivative Estimation," STICERD - Econometrics Paper Series 529, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    4. Chuan Goh, 2009. "Bootstrap-based Bandwidth Selection for Semiparametric Generalized Regression Estimators," Working Papers tecipa-375, University of Toronto, Department of Economics.
    5. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(1), pages 176-200, February.
    6. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    7. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    8. repec:hum:wpaper:sfb649dp2009-028 is not listed on IDEAS
    9. Victoria Zinde-Walsh & Marcia M.A. Schafgans, 2007. "Robust Average Derivative Estimation," Departmental Working Papers 2007-12, McGill University, Department of Economics.
    10. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Nishiyama, Y., 2004. "Minimum normal approximation error bandwidth selection for averaged derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 53-61.
    12. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    13. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    14. Christopher Withers & Saralees Nadarajah, 2013. "Density estimates of low bias," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 357-379, April.
    15. Subbotin, Viktor, 2008. "Essays on the econometric theory of rank regressions," MPRA Paper 14086, University Library of Munich, Germany.
    16. Subbotin, Viktor, 2007. "Asymptotic and bootstrap properties of rank regressions," MPRA Paper 9030, University Library of Munich, Germany, revised 20 Mar 2008.
    17. Gao, Jiti & Gijbels, Irene, 2005. "Bandwidth selection for nonparametric kernel testing," MPRA Paper 11982, University Library of Munich, Germany, revised Jun 2007.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    2. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    3. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    4. Nishiyama, Y., 2004. "Minimum normal approximation error bandwidth selection for averaged derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 53-61.
    5. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    6. Linton, Oliver, 2002. "Edgeworth approximations for semiparametric instrumental variable estimators and test statistics," Journal of Econometrics, Elsevier, vol. 106(2), pages 325-368, February.
    7. Marcia M Schafgans & Victoria Zinde-Walshyz, 2008. "Smoothness Adaptive AverageDerivative Estimation," STICERD - Econometrics Paper Series 529, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(1), pages 176-200, February.
    9. Horowitz, Joel L., 2002. "Bootstrap critical values for tests based on the smoothed maximum score estimator," Journal of Econometrics, Elsevier, vol. 111(2), pages 141-167, December.
    10. Chen, Xirong & Gao, Wenzheng & Li, Zheng, 2018. "A data-driven bandwidth selection method for the smoothed maximum score estimator," Economics Letters, Elsevier, vol. 170(C), pages 24-26.
    11. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    12. Joel L. Horowitz, 2018. "Bootstrap methods in econometrics," CeMMAP working papers CWP53/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    14. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    15. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    16. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    17. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    18. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    19. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    21. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.

    More about this item

    Keywords

    Bootstrap; Edgeworth correction; semiparametric averaged derivatives;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stiecm:483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://sticerd.lse.ac.uk/_new/publications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.