[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i5p884-900.html
   My bibliography  Save this article

On the directional accuracy of inflation forecasts: evidence from South African survey data

Author

Listed:
  • Christian Pierdzioch
  • Monique B. Reid
  • Rangan Gupta
Abstract
We study the information content of South African inflation survey data by determining the directional accuracy of both short-term and long-term forecasts. We use relative operating characteristic (ROC) curves, which have been applied in a variety of fields including weather forecasting and radiology, to ascertain the directional accuracy of the forecasts. A ROC curve summarizes the directional accuracy of forecasts by comparing the rate of true signals (sensitivity) with the rate of false signals (one minus specifity). A ROC curve goes beyond market-timing tests widely studied in earlier research as this comparison is carried out for many alternative values of a decision criterion that discriminates between signals (of a rising inflation rate) and nonsignals (of an unchanged or a falling inflation rate). We find consistent evidence that forecasts contain information with respect to the subsequent direction of change of the inflation rate.

Suggested Citation

  • Christian Pierdzioch & Monique B. Reid & Rangan Gupta, 2018. "On the directional accuracy of inflation forecasts: evidence from South African survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 884-900, April.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:884-900
    DOI: 10.1080/02664763.2017.1322556
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1322556
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1322556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Reid, Monique, 2015. "Inflation expectations of the inattentive general public," Economic Modelling, Elsevier, vol. 46(C), pages 157-166.
    2. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Inflation forecasts and forecaster herding: Evidence from South African survey data," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 62(C), pages 42-50.
    3. Kabundi, Alain & Schaling, Eric & Some, Modeste, 2015. "Monetary policy and heterogeneous inflation expectations in South Africa," Economic Modelling, Elsevier, vol. 45(C), pages 109-117.
    4. Janine Aron & John Muellbauer, 2007. "Review of Monetary Policy in South Africa since 1994," Journal of African Economies, Centre for the Study of African Economies, vol. 16(5), pages 705-744, November.
    5. Tara Sinclair & H. O. Stekler & L. Kitzinger, 2010. "Directional forecasts of GDP and inflation: a joint evaluation with an application to Federal Reserve predictions," Applied Economics, Taylor & Francis Journals, vol. 42(18), pages 2289-2297.
    6. Ash, J. C. K. & Smyth, D. J. & Heravi, S. M., 1998. "Are OECD forecasts rational and useful?: a directional analysis," International Journal of Forecasting, Elsevier, vol. 14(3), pages 381-391, September.
    7. Schnader, M H & Stekler, H O, 1990. "Evaluating Predictions of Change," The Journal of Business, University of Chicago Press, vol. 63(1), pages 99-107, January.
    8. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    9. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    10. Oller, Lars-Erik & Barot, Bharat, 2000. "The accuracy of European growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 16(3), pages 293-315.
    11. Alain Kabundi & Eric Schaling, 2013. "Inflation and Inflation Expectations in South Africa: an Attempt at Explanation," South African Journal of Economics, Economic Society of South Africa, vol. 81(3), pages 346-355, September.
    12. Klaus Adam & Mario Padula, 2011. "Inflation Dynamics And Subjective Expectations In The United States," Economic Inquiry, Western Economic Association International, vol. 49(1), pages 13-25, January.
    13. Ricardo Nunes, 2010. "Inflation Dynamics: The Role of Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1161-1172, September.
    14. Nelene Ehlers & Rudi Steinbach, 2007. "The formation of inflation expectations in South Africa," Working Papers 3243, South African Reserve Bank.
    15. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    16. Monique Reid, 2009. "The Sensitivity Of South African Inflation Expectations To Surprises," South African Journal of Economics, Economic Society of South Africa, vol. 77(3), pages 414-429, September.
    17. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
    18. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    19. Jordi Pons, 2001. "The rationality of price forecasts: a directional analysis," Applied Financial Economics, Taylor & Francis Journals, vol. 11(3), pages 287-290.
    20. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mr. Ken Miyajima & James Yetman, 2018. "Inflation Expectations Anchoring Across Different Types of Agents: the Case of South Africa," IMF Working Papers 2018/177, International Monetary Fund.
    2. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Forecasting the South African inflation rate: On asymmetric loss and forecast rationality," Economic Systems, Elsevier, vol. 40(1), pages 82-92.
    3. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    4. Maas, Benedikt, 2019. "Nowcasting and forecasting US recessions: Evidence from the Super Learner," MPRA Paper 96408, University Library of Munich, Germany.
    5. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
    6. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    7. Babalos, Vassilios & Stavroyiannis, Stavros & Gupta, Rangan, 2015. "Do commodity investors herd? Evidence from a time-varying stochastic volatility model," Resources Policy, Elsevier, vol. 46(P2), pages 281-287.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Forecasting the South African inflation rate: On asymmetric loss and forecast rationality," Economic Systems, Elsevier, vol. 40(1), pages 82-92.
    2. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Inflation forecasts and forecaster herding: Evidence from South African survey data," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 62(C), pages 42-50.
    3. Tsuchiya, Yoichi, 2016. "Directional analysis of fiscal sustainability: Revisiting Domar's debt sustainability condition," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 189-201.
    4. Tim Meyer, 2019. "On the Directional Accuracy of United States Housing Starts Forecasts: Evidence from Survey Data," The Journal of Real Estate Finance and Economics, Springer, vol. 58(3), pages 457-488, April.
    5. Tsuchiya, Yoichi, 2013. "Do corporate executives have accurate predictions for the economy? A directional analysis," Economic Modelling, Elsevier, vol. 30(C), pages 167-174.
    6. Tsuchiya, Yoichi, 2016. "Do production managers predict turning points? A directional analysis," Economic Modelling, Elsevier, vol. 58(C), pages 1-8.
    7. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    8. repec:hum:wpaper:sfb649dp2008-073 is not listed on IDEAS
    9. Pierdzioch, Christian & Rülke, Jan-Christoph, 2015. "On the directional accuracy of forecasts of emerging market exchange rates," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 369-376.
    10. Tsuchiya, Yoichi, 2014. "Purchasing and supply managers provide early clues on the direction of the US economy: An application of a new market-timing test," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 599-618.
    11. Blaskowitz, Oliver J. & Herwartz, Helmut, 2008. "Testing directional forecast value in the presence of serial correlation," SFB 649 Discussion Papers 2008-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Y. Tsuchiya, 2014. "A directional evaluation of corporate executives' exchange rate forecasts," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 95-101, January.
    13. Greer, Mark, 2003. "Directional accuracy tests of long-term interest rate forecasts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 291-298.
    14. Masahiro Ashiya, 2006. "Are 16-month-ahead forecasts useful? A directional analysis of Japanese GDP forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 201-207.
    15. Tsuchiya, Yoichi, 2013. "Are government and IMF forecasts useful? An application of a new market-timing test," Economics Letters, Elsevier, vol. 118(1), pages 118-120.
    16. Casarin, Roberto & Costantini, Mauro & Paradiso, Antonio, 2021. "On the role of dependence in sticky price and sticky information Phillips curve: Modelling and forecasting," Economic Modelling, Elsevier, vol. 105(C).
    17. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
    18. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    19. Masahiro Ashiya, 2003. "The directional accuracy of 15-months-ahead forecasts made by the IMF," Applied Economics Letters, Taylor & Francis Journals, vol. 10(6), pages 331-333.
    20. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    21. Baghestani, Hamid & Toledo, Hugo, 2017. "Do analysts' forecasts of term spread differential help predict directional change in exchange rates?," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 62-69.

    More about this item

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:884-900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.