Forecasting Crude Oil Volatility Using the Deep Learning‐Based Hybrid Models With Common Factors
Author
Suggested Citation
DOI: 10.1002/fut.22529
Download full text from publisher
References listed on IDEAS
- N. Bloom, 2016.
"Fluctuations in uncertainty,"
Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 4.
- Nicholas Bloom, 2014. "Fluctuations in Uncertainty," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 153-176, Spring.
- Nicholas Bloom, 2013. "Fluctuations in Uncertainty," CEP Occasional Papers 038, Centre for Economic Performance, LSE.
- Nicholas Bloom, 2014. "Fluctuations in Uncertainty," Discussion Papers 13-033, Stanford Institute for Economic Policy Research.
- Nicholas Bloom, 2013. "Fluctuations in Uncertainty," NBER Working Papers 19714, National Bureau of Economic Research, Inc.
- Nicholas Bloom, 2014. "Fluctuations In Uncertainty," Working Papers 14-17, Center for Economic Studies, U.S. Census Bureau.
- Bloom, Nicholas, 2013. "Fluctuations in uncertainty," LSE Research Online Documents on Economics 57976, London School of Economics and Political Science, LSE Library.
- Andrea Bucci, 2020.
"Realized Volatility Forecasting with Neural Networks,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Andrea Bucci, 0. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Bucci, Andrea, 2019. "Realized Volatility Forecasting with Neural Networks," MPRA Paper 95443, University Library of Munich, Germany.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016.
"The common factor in idiosyncratic volatility: Quantitative asset pricing implications,"
Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
- Bernard Herskovic & Bryan T. Kelly & Hanno Lustig & Stijn Van Nieuwerburgh, 2014. "The Common Factor in Idiosyncratic Volatility: Quantitative Asset Pricing Implications," NBER Working Papers 20076, National Bureau of Economic Research, Inc.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2002.
"Econometric analysis of realized volatility and its use in estimating stochastic volatility models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
- Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
- Kang, Boda & Nikitopoulos, Christina Sklibosios & Prokopczuk, Marcel, 2020.
"Economic determinants of oil futures volatility: A term structure perspective,"
Energy Economics, Elsevier, vol. 88(C).
- Boda Kang & Christina Sklibosios Nikitopoulos & Marcel Prokopczuk, 2019. "Economic Determinants of Oil Futures Volatility: A Term Structure Perspective," Research Paper Series 401, Quantitative Finance Research Centre, University of Technology, Sydney.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Sydney C. Ludvigson & Serena Ng, 2009.
"Macro Factors in Bond Risk Premia,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
- Sydeny C. Ludvigson & Serena Ng, 2005. "Macro Factors in Bond Risk Premia," NBER Working Papers 11703, National Bureau of Economic Research, Inc.
- Dongwoo Kim & Changryong Baek, 2020. "Factor-augmented HAR model improves realized volatility forecasting," Applied Economics Letters, Taylor & Francis Journals, vol. 27(12), pages 1002-1009, June.
- O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
- Feng Ma & Xinjie Lu & Lu Wang & Julien Chevallier, 2021. "Global economic policy uncertainty and gold futures market volatility: Evidence from Markov regime‐switching GARCH‐MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1070-1085, September.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
- I-Hsuan Ethan Chiang & W. Keener Hughen & Jacob S. Sagi, 2015. "Estimating Oil Risk Factors Using Information from Equity and Derivatives Markets," Journal of Finance, American Finance Association, vol. 70(2), pages 769-804, April.
- Zhanhui Chen & Ralitsa Petkova, 2012. "Does Idiosyncratic Volatility Proxy for Risk Exposure?," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2745-2787.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
- Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Qianjie Geng & Xianfeng Hao & Yudong Wang, 2024. "Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 309-325, March.
- Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
- Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016.
"Exploiting the errors: A simple approach for improved volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2015. "Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting," CREATES Research Papers 2015-14, Department of Economics and Business Economics, Aarhus University.
- Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
- Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
- Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
- Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
- Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
- Xu, Yanyan & Liu, Jing & Ma, Feng & Chu, Jielei, 2024. "Liquidity and realized volatility prediction in Chinese stock market: A time-varying transitional dynamic perspective," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 543-560.
- Tong Fang & Deyu Miao & Zhi Su & Libo Yin, 2023. "Uncertainty‐driven oil volatility risk premium and international stock market volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 872-904, July.
- Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:44:y:2024:i:8:p:1429-1446. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.